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Abstract

We propose a multi-agent variant of the classical multi-armed bandit problem, in which there
are N agents and K arms, and pulling an arm generates a (possibly different) stochastic reward
for each agent. Unlike the classical multi-armed bandit problem, the goal is not to learn the
“best arm”; indeed, each agent may perceive a different arm to be the best for her personally.
Instead, we seek to learn a fair distribution over the arms. Drawing on a long line of research in
economics and computer science, we use the Nash social welfare as our notion of fairness. We
design multi-agent variants of three classic multi-armed bandit algorithms and show that they
achieve sublinear regret, which is now measured in terms of the lost Nash social welfare.

1 Introduction

In the classical (stochastic) multi-armed bandit (MAB) problem, a principal has access to K arms
and pulling arm j generates a stochastic reward for the principal from an unknown distribution
Dj with an unknown mean µ∗j . If the mean rewards were known a priori, the principal could just
repeatedly pull the best arm given by arg maxj µ

∗
j . However, the principal has no apriori knowledge

of the quality of the arms. Hence, she uses a learning algorithm which operates in rounds, pulls
arm jt in round t, observes the stochastic reward generated, and uses that information to learn the
best arm over time. The performance of such an algorithm is measured in terms of its cumulative
regret up to a horizon T , defined as

∑T
t=1(maxj µ

∗
j − µ∗jt). Note that this is the difference between

the total mean reward that would have been achieved if the best arm was pulled repeatedly and
the total mean reward of the arms pulled by the learning algorithm up to round T .

This problem can model situations where the principal is deliberating a policy decision and
the arms correspond to the different alternatives she can implement. However, in many real-life
scenarios, making a policy decision affects not one, but several agents. For example, imagine a
company making a decision that affects all its employees, or a conference deciding the structure of
its review process, which affects various research communities. This can be modeled by a multi-
agent variant of the multi-armed bandit (MA-MAB) problem, in which there are N agents and
pulling arm j generates a (possibly different) stochastic reward for each agent i from an unknown
distribution Di,j with an unknown mean µ∗i,j .

Before pondering about learning the “best arm” over time, we must ask what the best arm even
means in this context. Indeed, the “best arm” for one agent may not be the best for another. A
first attempt may be to associate some “aggregate quality” to each arm; for example, the quality
of arm j may be defined as the total mean reward it gives to all agents, i.e.,

∑
i µ
∗
i,j . This would
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nicely reduce our problem to the classic multi-armed bandit problem, for which we have an armory
of available solutions [30]. However, this approach suffers from the tyranny of the majority [28].
For example, imagine a scenario with ten agents, two arms, and deterministic rewards. Suppose
four agents derive a reward of 1 from the first arm but 0 from the second, while the remaining six
derive a reward of 1 from the second arm but 0 from the first. The aforementioned approach will
deem the second arm as the best and a classical MAB algorithm will converge to repeatedly pulling
the second arm, thus unfairly treating the first four agents (a minority). A solution which treats
each group in a “proportionally fair” [28] manner should ideally converge to pulling the first arm
40% of the time and the second 60% of the time. Alternatively, we can allow the learning algorithm
to “pull” a probability distribution over the arms and seek an algorithm that converges to placing
probability 0.4 on the first arm and 0.6 on the second.

This problem of making a fair collective decision when the available alternatives — in this case,
probability distributions over the arms — affect multiple agents is well-studied in computational
social choice [7]. The literature offers a compelling fairness notion called the Nash social welfare,
named after John Nash. According to this criterion, the fairest distribution maximizes the product
of the expected utilities (rewards) to the agents. A distribution p that places probability pj on each
arm j gives expected utility

∑
j pj · µ∗i,j to agent i. Hence, the goal is to maximize NSW(p, µ∗) =∏N

i=1(
∑K

j=1 pj ·µ∗i,j) over p. One can verify that this approach on the aforementioned example indeed
yields probability 0.4 on the first arm and 0.6 on the second, as desired. It is also interesting to
point out that with a single agent (N = 1), the distribution maximizing the Nash social welfare puts
probability 1 on the best arm, thus effectively reducing the problem to the classical multi-armed
bandit problem (albeit with subtle differences which we highlight in Section 6).

Maximizing the Nash social welfare is often seen as a middle ground between maximizing the
utilitarian social welfare (sum of utilities to the agents), which is unfair to minorities (as we ob-
served), and maximizing the egalitarian social welfare (minimum utility to any agent), which is
considered too extreme [28]. The solution maximizing the Nash social welfare is also known to sat-
isfy other qualitative fairness desiderata across a wide variety of settings [1, 4, 6, 8, 12, 16, 17, 18].
For example, a folklore result shows that in our setting such a solution will always lie in the core;
we refer the reader to the work of Fain et al. [17] for a formal definition of the core as well as a
short derivation of this fact using the first-order optimality condition. For further discussion on
this, see Sections 1.2 and 7.

When exactly maximizing the Nash social welfare is not possible (either due to a lack of complete
information, as in our case, or due to computational difficulty), researchers have sought to achieve
approximate fairness by approximately maximizing this objective [2, 10, 11, 19, 20, 26]. Following
this approach in our problem, we define the (cumulative) regret of an algorithm at horizon T as∑T

t=1(maxp NSW(p, µ∗)−NSW(pt, µ∗)), where pt is the distribution selected in round t. Our goal
in this paper is to design algorithms whose regret is sublinear in T .

1.1 Our Results

We consider three classic algorithms for the multi-armed bandit problem: Explore-First, Epsilon-
Greedy, and UCB [30]. All three algorithms attempt to balance exploration (pulling arms only to
learn their rewards) and exploitation (using the information learned so far to pull “good” arms).
Explore-First performs exploration for a number of rounds optimized as a function of T followed
by exploitation in the remaining rounds to achieve regret Õ

(
K1/3T 2/3

)
. Epsilon-Greedy flips a

coin in each round to decide whether to perform exploration or exploitation and achieves the same
regret bound. Its key advantage over Explore-First is that it does not need to know the horizon
T upfront. UCB merges exploration and exploitation to achieve a regret bound of Õ

(
K1/2T 1/2

)
.
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Here, Õ hides log factors. Traditionally, the focus is on optimizing the exponent of T rather than
that of K as the horizon T is often much larger than the number of arms K. It is known that
the dependence of UCB’s regret on T is optimal: no algorithm can achieve instance-independent
o(T 1/2) regret [3].1

We propose natural multi-agent variants of these three algorithms. Our variants take the Nash
social welfare objective into account and select a distribution over the arms in each round instead
of a single arm. For Explore-First, we derive Õ

(
N2/3K1/3T 2/3

)
regret bound, which recovers the

aforementioned single-agent bound with an additional factor of N2/3. We also show that changing
a parameter of the algorithm yields a regret bound of Õ

(
N1/3K2/3T 2/3

)
, which offers a different

tradeoff between the dependence on N and K. For Epsilon-Greedy, we recover the same two regret
bounds, although the analysis becomes much more intricate. This is because, as mentioned above,
Epsilon-Greedy is a horizon-independent algorithm (i.e. it does not require apriori knowledge of T ),

unlike Explore-First. For UCB, we derive Õ
(
NKT 1/2

)
and Õ

(
N1/2K

3
2T 1/2

)
regret bounds; our

dependence on K worsens compared to the classical single-agent case, but importantly, we recover
the same

√
T dependence. Finally, we note that even for N = 1, a learning algorithm is slightly

more powerful in our setting than in the classical setting since it can choose a distribution over the
arms as opposed to a deterministic arm. Nonetheless, we derive an Ω(

√
T ) instance-independent

lower bound on the regret of any algorithm in our setting, establishing the asymptotic optimality
of our UCB variant.

Deriving these regret bounds for the multi-agent case requires overcoming two key difficulties
that do not appear in the single-agent case. First, our goal is to optimize a complicated function, the
Nash social welfare, rather than simply selecting the best arm. This requires a Lipschitz-continuity
analysis of the Nash social welfare function and the use of new tools such as the McDiarmid’s
inequality which are not needed in the standard analysis. Second, the optimization is over an
infinite space (the set of distributions over arms) rather than over a finite space (the set of arms).
Thus, certain tricks such as a simple union bound no longer work; we use the concept of δ-covering,
used heavily in the Lipschitz bandit framework [24], in order to address this.

1.2 Related Work

Since the multi-armed bandit problem was introduced by Thompson [31], many variants of it have
been proposed, such as sleeping bandit [23], contextual bandit [33], dueling bandit [34], Lipschitz
bandit [24], etc. However, all these variants involve a single agent who is affected by the decisions.
We note that other multi-agent variants of the multi-armed bandit problem have been explored
recently [5, 9]. However, they still involve a common reward like in the classical multi-armed bandit
problem. Their focus is on getting the agents to cooperate to maximize this common reward.

Another key aspect of our framework is the focus on fairness. Recently, several papers have
focused on fairness in the multi-armed bandit problem. For instance, Joseph et al. [22] design a
UCB variant which guarantees what they refer to as meritocratic fairness to the arms, i.e., that
a worse arm is never preferred to a better arm regardless of the algorithm’s confidence intervals
for them. Liu et al. [27] require that similar arms be treated similarly, i.e., two arms with similar
mean rewards be selected with similar probabilities. Gillen et al. [21] focus on satisfying fairness
with respect to an unknown fairness metric. Finally, Patil et al. [29] assume that there are external
constraints requiring that each arm be pulled in at least a certain fraction of the rounds and design

1In instance-independent bounds, the constant inside the big-Oh notation is not allowed to depend on the (un-
known) distributions in the given instance. UCB also achieves an O(log T ) instance-dependent regret bound, which
is also known to be asymptotically optimal [25]. For further discussion, see Section 7.
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algorithms that achieve low regret subject to this constraint. All these papers seek to achieve
fairness with respect to the arms. In contrast, in our work, the arms are “inanimate” (e.g. policy
decisions) and we seek fairness with respect to the agents, who are separate from the arms.

More broadly, the problem of making a fair decision given the (possibly conflicting) preferences
of multiple agents is well-studied in computational social choice [7] in a variety of contexts. For
example, one can consider our problem as that of randomized voting (alternatively known as fair
mixing [4]) by viewing the agents as voters and the arms are candidates. The goal is then to pick
a fair lottery over the candidates given the voters’ preferences. This is also a special case of other
more complex models studied in the literature such as fair public decision-making [12] and fair
allocation of public goods [17]. However, in computational social choice, voters typically have fixed
preferences over the candidates. In contrast, rewards observed by the agents in our framework
are stochastic. From this viewpoint, our work provides algorithms for maximizing the Nash social
welfare when noisy information can be queried regarding agent preferences.

2 Preliminaries

For n ∈ N, define [n] = {1, . . . , n}. Let N,K ∈ N. In the multi-agent multi-armed bandit (MA-
MAB) problem, there is a set of agents [N ] and a set of arms [K]. For each agent i ∈ [N ]
and arm j ∈ [K], there is a reward distribution Di,j with mean µ∗i,j and support [0, 1];2 when
arm j is pulled, each agent i observes an independent reward sampled from Di,j . Let us refer to
µ∗ = (µ∗i,j)i∈[N ],j∈[K] ∈ [0, 1]N×K as the (true) reward matrix.

Policies: As mentioned in the introduction, pulling an arm deterministically may be favorable
to one agent, but disastrous to another. Hence, we are interested in probability distributions over
arms, which we refer to as policies. The K-simplex, denoted ∆K , is the set of all policies. For a
policy p ∈ ∆K , pj denotes the probability with which arm j is pulled. Note that due to linearity

of expectation, the expected reward to agent i under policy p is
∑K

j=1 pj · µ∗i,j .

Nash social welfare: The Nash social welfare is defined the product of (expected) rewards to the

agents. Given µ = (µi,j)i∈[N ],j∈[K], and policy p ∈ ∆K , define NSW(p, µ) =
∏N
i=1

(∑K
j=1 pj · µi,j

)
.

Thus, the (true) Nash social welfare under policy p is NSW(p, µ∗). Hence, if we knew µ∗, we
would pick an optimal policy p∗ ∈ arg maxp∈∆K NSW(p, µ∗). However, because we do not know
µ∗ in advance, our algorithms will often produce an estimate µ̂, and use it to choose a policy; the
quantity NSW(p, µ̂) will play a key role in our algorithms and their analysis.

Algorithms: An algorithm for the MA-MAB problem chooses a policy pt in each round t ∈ N.
Then, an arm at is sampled according to policy pt, and for each agent i ∈ [N ], a reward Xt

i,at is
sampled independently from distribution Di,at . At the end of round t, the algorithm learns the
sampled arm at and the reward vector (Xt

i,at)i∈[N ], which it can use to choose policies in the later
rounds.

Reward estimates: All our algorithms maintain an estimate of the mean reward matrix µ∗ at
every round. For round t and arm j ∈ [K], let ntj =

∑t−1
s=1 1[as = j] denote the number of times

arm j is pulled at the beginning of round t, and let µ̂ti,j = 1
ntj

∑
s∈[t−1]:as=j X

s
i,j denote the average

2We need the support of the distribution to be non-negative and bounded, but the upper bound of 1 is without
loss of generality. All our bounds scale linearly with the upper bound on the support.
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reward experienced by agent i from the ntj pulls of arm j thus far. Our algorithms treat these as
an estimate of µ∗i,j available at the beginning of round t. Let µ̂t = (µ̂ti,j)i∈[N ],j∈[K].

Regret: Recall that p∗ is an optimal policy that has the highest Nash social welfare. The instan-
taneous regret in round t due to an algorithm choosing pt is rt = NSW(p∗, µ∗)−NSW(pt, µ∗). The
(cumulative) regret in round T due to an algorithm choosing p1, . . . , pT is RT =

∑T
t=1 r

t. We note
that RT and rt are defined for a specific algorithm, which will be clear from the context. We are
interested in bounding the expected regret E[RT ] of an algorithm at round T , where the expecta-
tion is over the randomness involved in sampling the arms at and the agent rewards (Xt

i,at)i∈[N ] for

t ∈ [T ].3 We say that an algorithm is horizon-dependent if it needs to know T in advance in order
to yield bounded regret at round T , and horizon-independent if it yields such a bound without
knowing T in advance.

δ-Covering: Given a metric space (X, d) and δ > 0, a set S ⊆ X is called a δ-cover if for each
x ∈ X, there exists s ∈ S with d(x, s) ≤ δ. That is, from each point in the metric space, there
is a point in the δ-cover that is no more than δ distance away. We will heavily use the fact that
there exists a δ-cover of (∆K , ‖·‖1) (i.e. the K-simplex under the L1 distance) with size at most

(1 + 2/δ)K [32, p. 126], which follows from a simple discretization of the simplex.

3 Explore-First

ALGORITHM 1: Explore-First

Input: Number of agents N , number of arms K, horizon T

Parameters : Exploration period L

// Pull each arm L times

for t = 1, . . . ,K · L do // Exploration

j ← dt/Le
pt ← policy that puts probability 1 on arm j // Pull arm j deterministically

end

Compute the estimated reward matrix µ̂ , µ̂K·L+1 of the rewards observed so far

Compute p̂ ∈ arg maxp∈∆K NSW(p, µ̂)

for t = K · L+ 1, . . . , T do // Exploitation

pt ← p̂

end

Perhaps the simplest algorithm (with a sublinear regret bound) in the classic single-agent MAB
framework is Explore-First. It is composed of two distinct stages. The first stage is exploration,
during which the algorithm pulls each arm L times. At the end of this stage, the algorithm
computes the arm â with the best estimated mean reward, and in the subsequent exploitation
stage, pulls arm â in every round. The algorithm is horizon-dependent, i.e., it takes the horizon

T as input and sets L as a function of T . Setting L = Θ
(
K−

2
3T

2
3 log

1
3 (T )

)
yields regret bound

E[RT ] = O
(
K

1
3T

2
3 log

1
3 (T )

)
[30].

3The algorithms we study do not introduce any further randomness in choosing the policies.
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In our multi-agent variant, presented as Algorithm 1, the exploration stage pulls each arm L
times as before. However, at the end of this stage, the algorithm computes, not an arm â, but a
policy p̂ with the best estimated Nash social welfare. During exploitation, it then uses policy p̂
in every round. With an almost identical analysis as in the single-agent setting, we recover the
aforementioned regret bound with an additional N2/3 factor for N agents.

Using a novel and more intricate argument, we show that a different tradeoff between the
exponents of N and K can be obtained, where N2/3 is reduced to N1/3 at the expense of increasing
K1/3 to K2/3 (and adding a logarithmic term). We later use this approach again in our analysis of
more sophisticated algorithms.

Before we proceed to the proof, we remark that Algorithm 1 can be implemented efficiently.
The only non-trivial step is to compute the optimal policy given an estimated reward matrix, i.e.,
p̂ ∈ arg maxp∈∆K NSW(p, µ̂). Since the Nash social welfare is known to be log-concave, this can be
solved in polynomial time [15].

We begin by presenting a few elementary lemmas regarding the behavior of the Nash social
welfare function NSW(p, µ). We are mainly interested in how much the function can change when
its arguments change. To that end, the following folklore result translates the difference in a product
to a sum of point-wise differences that are easier to deal with.

Lemma 1. Let ai, bi ∈ [0, 1] for i ∈ [N ]. Then,
∣∣∣∏N

i=1 ai −
∏N
i=1 bi

∣∣∣ ≤∑N
i=1 |ai − bi|.

Proof. We prove this using induction on N . For N = 1, the lemma trivially holds. Suppose it
holds for N = n. For N = n+ 1, we have∣∣∣∣∣

n+1∏
i=1

ai −
n+1∏
i=1

bi

∣∣∣∣∣ =

∣∣∣∣∣
n+1∏
i=1

ai − bn+1

n∏
i=1

ai + bn+1

n∏
i=1

ai −
n+1∏
i=1

bi

∣∣∣∣∣
≤

(
n∏
i=1

ai

)
|an+1 − bn+1|+ bn+1 ·

∣∣∣∣∣
n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣
≤ |an+1 − bn+1|+

n∑
i=1

|ai − bi| =
n+1∑
i=1

|ai − bi| ,

where the second transition is due to the triangle inequality, and the third transition holds due to
the induction hypothesis and because ai, bi ∈ [0, 1] for each i.

Using Lemma 1, we can easily analyze Lipschitz-continuity of NSW(p, µ) when either p or µ
changes and the other is fixed. First, we consider change in p with µ fixed.

Lemma 2. Given a reward matrix µ ∈ [0, 1]N×K and policies p1, p2 ∈ ∆K , we have∣∣NSW(p1, µ)−NSW(p2, µ)
∣∣ ≤ N · ∥∥p1 − p2

∥∥
1

= N ·
∑
j∈[K]

∣∣p1
j − p2

j

∣∣ .
Proof. Using Lemma 1, we have∣∣NSW(p1, µ)−NSW(p2, µ)

∣∣ ≤∑i∈[N ]

∣∣∣∑j∈[K](p
1
j − p2

j ) · µi,j
∣∣∣ ≤ N ·∑j∈[K]

∣∣∣p1
j − p2

j

∣∣∣ ,
where the final transition is due to the triangle inequality and because µi,j ∈ [0, 1] for each i, j.

Next, we consider change in µ with p fixed.
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Lemma 3. Given a policy p ∈ ∆K , and reward matrices µ1, µ2 ∈ [0, 1]N×K , we have∣∣NSW(p, µ1)−NSW(p, µ2)
∣∣ ≤ ∑

i∈[N ]

∑
j∈[K]

pj ·
∣∣µ1
i,j − µ2

i,j

∣∣ .
Proof. Again, using Lemma 1, we have∣∣NSW(p, µ1)−NSW(p, µ2)

∣∣ ≤∑i∈[N ]

∣∣∣∑j∈[K] pj · (µ1
i,j − µ2

i,j)
∣∣∣ ≤∑i∈[N ],j∈[K] pj ·

∣∣∣µ1
i,j − µ2

i,j

∣∣∣ ,
where the last transition is due to the triangle inequality.

We are now ready to derive the regret bounds for Explore-First.

Theorem 1. Explore-First is horizon-dependent and has the following expected regret at round T .

• When L = Θ
(
N

2
3K−

2
3T

2
3 log

1
3 (NKT )

)
, E[RT ] = O

(
N

2
3K

1
3T

2
3 log

1
3 (NKT )

)
.

• When L = Θ
(
N

1
3K−

1
3T

2
3 log

2
3 (NKT )

)
, E[RT ] = O

(
N

1
3K

2
3T

2
3 log

2
3 (NKT )

)
.

Proof. Note that the instantaneous regret rt(pt) in any round t can be at most 1 because NSW(p, µ∗) ∈
[0, 1] for every policy p. Thus,

E[RT ] =

T∑
t=1

E[rt] ≤ KL · 1 + (T −KL) · E[NSW(p∗, µ∗)−NSW(p̂, µ∗)]. (1)

Thus, our goal is to bound E[NSW(p∗, µ∗)−NSW(p̂, µ∗)]. We bound this in two ways.

First approach: We present this approach briefly since it largely mimics the classical analysis
with an application of Lemma 3. Here, we bound how much µ̂ can deviate from µ∗. Specifically, we

let ε =

√
log(NKT )

L and define the event E , ∀i ∈ [N ],∀j ∈ [K] :
∣∣∣µ̂i,j − µ∗i,j∣∣∣ ≤ ε. Since L is fixed,

we have E[µ̂i,j ] = µ∗i,j . Hence, we can apply Hoeffding’s inequality followed by the union bound to

derive Pr[E ] ≥ 1−2/T 2. Conditioned on E , from Lemma 3 we have NSW(p, µ∗)−NSW(p, µ̂) ≤ Nε
for every policy p, which implies

NSW(p∗, µ∗) ≤ NSW(p∗, µ̂) +Nε ≤ NSW(p̂, µ̂) +Nε ≤ NSW(p̂, µ∗) + 2Nε,

where the second transition is because p̂ ∈ arg maxp∈∆K NSW(p, µ̂). Substituting this into Equa-
tion (1), using the fact that E[NSW(p∗, µ∗)−NSW(p̂, µ∗)] ≤ 1 · E[NSW(p∗, µ∗)−NSW(p̂, µ∗)|E ] +

Pr[¬E ] · 1, and setting L = Θ
(
N

2
3K−

2
3T

2
3 log

1
3 (NKT )

)
yields the first regret bound.

Second approach: We now focus on another approach for bounding E[NSW(p∗, µ∗)−NSW(p̂, µ∗)],
which is more intricate and offers a different tradeoff between the dependence on N and K. Notice
that for a given p, E[NSW(p, µ̂)] = NSW(p, µ∗) because all µ̂i,j-s are independent and expectation
decomposes over sums and products of independent random variables. Thus, we can use McDi-
armid’s inequality to bound |NSW(p, µ̂)−NSW(p, µ∗)| at a given p.

Fix a δ-cover P of (∆K , ‖·‖1) with |P| ≤ (1 + 2/δ)K . Fix p ∈ P. Notice that µ̂i,j = (1/L) ·∑L
s=1X

s
i,j , where Xs

i,j is the reward to agent i from the s-th pull of arm j during the exploration
phase.

We thus decompose µ̂ into N · L random variables: for each i ∈ [N ] and s ∈ [L], we let
Xs
i = (Xs

i,j)j∈[K]. To apply McDiarmid’s inequality, we need to analyze the maximum amount csi
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by which changing Xs
i can change NSW(p, µ̂). Using Lemma 3, it is easy to see that csi ≤ 1/L for

each i ∈ [N ] and s ∈ [L]. Now, applying McDiarmid’s inequality, we have

Pr [|NSW(p, µ̂)−NSW(p, µ∗)| ≤ ε] ≤ 2e
−2ε2∑

i∈[N ],s∈[L](c
s
i
)2 = 2e

−2Lε2

N .

Setting ε =

√
N log(|P|T )

2L , we have that for each p ∈ P,

Pr

[
|NSW(p, µ̂)−NSW(p, µ∗)| ≤

√
N log(|P|T )

2L

]
≤ 2

|P|T
.

Using the union bound, we have that

Pr

[
∀p ∈ P : |NSW(p, µ̂)−NSW(p, µ∗)| ≤

√
N log(|P|T )

2L

]
≥ 1− 2

T
.

For p ∈ ∆K , let p ∈ arg minp′∈P ‖p− p′‖1. Then, since P is a δ-cover, we have ‖p− p‖1 ≤ δ.
Thus, due to Lemma 2, we have

|NSW(p, µ̂)−NSW(p, µ∗)| ≤
∑

µ∈{µ̂,µ∗}

|NSW(p, µ)−NSW(p, µ)|+ |NSW(p, µ̂)−NSW(p, µ∗)|

≤ 2Nδ + |NSW(p, µ̂)−NSW(p, µ∗)| .

Setting δ = 1
NT , we have

Pr

[
∀p ∈ ∆K : |NSW(p, µ̂)−NSW(p, µ∗)| ≤ 2

T
+

√
N log(|P|T )

2L

]
≥ 1− 2

T
.

Next, we use the fact that

NSW(p∗, µ∗)−NSW(p̂, µ∗) ≤
∑

p∈{p∗,p̂}

|NSW(p, µ̂)−NSW(p, µ∗)| .

Hence,

Pr

[
|NSW(p∗, µ∗)−NSW(p̂, µ∗)| ≤ 4

T
+

√
2N log(|P|T )

L

]
≥ 1− 2

T
.

Next, we substitute |P| ≤ (1+2/δ)K ≤ (3/δ)K , δ = 1
NT , and L = Θ

(
N

1
3K−

1
3T

2
3 log

2
3 (NKT )

)
,

and then substitute the derived bound in Equation (1) to get the second regret bound.

4 Epsilon-Greedy

A slightly more sophisticated algorithm than Explore-First is Epsilon-Greedy, which is presented as
Algorithm 2. It spreads out exploration instead of performing it all at the beginning. Specifically, at
each round t, it performs exploration with probability εt, and exploitation otherwise. Exploration
cycles through the arms in a round-robin fashion, while exploitation uses the policy pt with the
highest Nash social welfare under the current estimated reward matrix (rather than choosing a
single estimated best arm as in the classical algorithm).
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ALGORITHM 2: εt-Greedy

Input: Number of agents N , number of arms K

Parameters : Exploration probabilities εt for t ∈ N
curr ← 1 // Next arm to pull during exploration

for t = 1, 2, . . . , do

Toss a coin with success probability εt

if success then // Exploration

// Round-robin among arms during exploration

pt ← policy that puts probability 1 on arm curr // Pull it deterministically

curr ← curr + 1 // When curr becomes K + 1, reset to 1

else // Exploitation

Compute the estimated reward matrix µ̂t from the rewards observed so far

pt ← arg maxp∈∆K NSW(p, µ̂t)

end

end

We remark that, like Explore-First, Epsilon-Greedy can also be implemented efficiently. The
only non-trivial step is to compute p̂ ∈ arg maxp∈∆K NSW(p, µ̂), which, as we mentioned before,
can be done in polynomial time.

The key advantage of Epsilon-Greedy over Explore-First is that it is horizon-independent. How-
ever, in the µ̂ computed in Explore-First at the end of exploration, each µ̂i,j is the average of L
iid samples, where L is fixed. In contrast, in the µ̂t computed in Epsilon-Greedy in round t, each
µ̂ti,j is the average of ntj iid samples. The fact that ntj is itself a random variable and the µ̂ti,j-
s are correlated through the ntj-s prevents a direct application of certain statistical inequalities,
thus complicating the analysis of Epsilon-Greedy. To address this, we first present a sequence
of useful lemmas that apply to any algorithm, and then use them to prove the regret bounds of
Epsilon-Greedy and later UCB.

4.1 Useful Lemmas

Recall that µ∗ and µ̂t denote the true reward matrix and the estimated reward matrix at the begin-
ning of round t, respectively. Our goal is to find an upper bound on the quantity

∣∣NSW(p, µ∗)−NSW(p, µ̂t)
∣∣

that, with high probability, holds at every p ∈ ∆K simultaneously. To that end, we first need to
show that µ̂t will be close to µ∗ with high probability.

Recall that random variable ntj denotes the number of times arm j is pulled by an algorithm
before round t, and µ̂ti,j is an average over ntj independent samples. Hence, we cannot directly
apply Hoeffding’s inequality, but we can nonetheless use standard tricks from the literature.

Lemma 4. Define rtj =

√
2 log(NKt)

ntj
, and event

E t , ∀i ∈ [N ], j ∈ [K] :
∣∣µ̂ti,j − µ∗i,j∣∣ ≤ rtj .

Then, for any algorithm and any t, we have Pr[E t] ≥ 1− 2
t3

.

Proof. Fix t. For i ∈ [N ], j ∈ [K], and ` ∈ [t], let v`i,j denote the average reward to agent i from

9



the first ` pulls of arm j, and define r`j =

√
2 log(NKt)

` . Then, by Hoeffding’s inequality, we have

∀i ∈ [N ], j ∈ [K], ` ∈ [t] : Pr
[∣∣∣v`i,j − µi,j∣∣∣ > r`j

]
≤ 2

(NKt)4
.

By the union bound, we get

Pr
[
∀i ∈ [N ], j ∈ [K], ` ∈ [t] :

∣∣∣v`i,j − µi,j∣∣∣ ≤ r`j] ≥ 1− 2

(NKt)3
.

Because ntj ∈ [t] for each j ∈ [K], the above event implies our desired event E t. Hence, we have

that Pr[E t] ≥ 1− 2/(NKt)3 ≥ 1− 2/t3.

Conditioned on E t, we wish to bound
∣∣NSW(p, µ∗)−NSW(p, µ̂t)

∣∣ simultaneously at all p ∈ ∆K .
We provide two such (incomparable) bounds, which will form the crux of our regret bound analysis.
The first bound is a direct application of the Lipschitz-continuity analysis from Lemma 3.

Lemma 5. Conditioned on E t, we have that

∀p ∈ ∆K :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤ N · ∑
j∈[K]

pj · rtj .

Proof. Conditioned on E t, we have
∣∣∣µ̂ti,j − µ∗i,j∣∣∣ ≤ rtj for each j ∈ [K]. In that case, it is easy to see

that the upper bound from Lemma 3 becomes N ·
∑

j∈[K] pj · rtj .

The factor of N in Lemma 5 stems from analyzing how much µ̂t may deviate from µ∗ conditioned
on E t, in the worst case. However, even after conditioning on E t, µ̂t remains a random variable.
Hence, one may expect that its deviation, and thus the difference

∣∣NSW(p, µ̂t)−NSW(p, µ∗)
∣∣, may

be smaller in expectation. Thus, to derive a different bound than in Lemma 5, we wish to apply
McDiarmid’s inequality. However, there are two issues in doing so directly.

• McDiarmid’s inequality bounds the deviation of NSW(p, µ̂t) from its expected value. If µ̂t

consisted of independent random variables, like in Explore-First, this would be equal to
NSW(p, µ∗). However, in general, these variables may be correlated through ntj . We use a
conditioning trick to address this issue.

• We cannot hope to apply McDiarmid’s inequality at each p ∈ ∆K separately and use the union
bound because ∆K is infinite. So we apply it at each p in a δ-cover of ∆K , apply the union
bound, and then translate the guarantee to nearby p ∈ ∆K using the Lipschitz-continuity
analysis from Lemma 2.

The next result is one of the key technical contributions of our work with a rather long proof.

Lemma 6. Define the event

Ht , ∀p ∈ ∆K :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤√12NK log(NKt) ·
∑
j∈[K]

pj · rtj +
4

t
.

Then, for any algorithm and any t, we have Pr[Ht|E t] ≥ 1− 2/t3.
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Proof. Fix p ∈ ∆K . Fix δ > 0, and let P be a δ-cover of the policy simplex ∆K with |P| ≤
(1 + 2/δ)K [32, p. 126].

Conditioned on E t (i.e.
∣∣∣µ̂ti,j − µ∗i,j∣∣∣ ≤ rtj =

√
2 log(NKt)

ntj
,∀i ∈ [N ], j ∈ [K]), we wish to derive a

high probability bound on
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣. We can bound the deviation of NSW(p, µ̂t)
from its expected value. However, unlike in the case of Explore-First, we cannot directly claim that
the expected value is NSW(p, µ∗) because, as we mentioned above, µ̂t consists of random variables
that may be correlated through the random varaible nt = (nt1, . . . , n

t
K) taking values in [t]K . Thus,

we need a more careful argument.

For i ∈ [N ], j ∈ [K], and `j ∈ [t], let v
`j
i,j denote the average reward to agent i from the first `j

pulls of arm j, and define r
`j
j =

√
2 log(NKt)

`j
. Let ` = (`1, . . . , `K) ∈ [t]K and v` = (v

`j
i,j)i∈[N ],j∈[K].

Each v
`j
i,j is independent and satisfies E[v

`j
i,j ] = µ∗i,j . Since expectation decomposes over sums and

products of independent random variables, we have E[NSW(p, v`)] = NSW(p, µ∗).

Evaluating conditional expectation: We next argue that further conditioning on the high
probability event E t does not change the expectation by much. Formally,∣∣∣NSW(p, µ∗)− E[NSW(p, v`)|E t]

∣∣∣
=
∣∣∣E[NSW(p, v`)]− E

[
NSW(p, v`)|E t

]∣∣∣
= Pr[¬E t] ·

∣∣∣E [NSW(p, v`)|¬E t
]
− E

[
NSW(p, v`)|E t

]∣∣∣
≤ Pr[¬E t] ≤ 2

t3
≤ 2

t
, (2)

where the penultimate transition holds because NSW is bounded in [0, 1], and the final transition
is due to Lemma 4.

Applying McDiarmid’s inequality: We first decompose v` into N random variables: for each
i ∈ [N ], let v`i = (v`i,j)j∈[K]. To apply McDiarmid’s inequality, we need to analyze the maximum

amount ci by which changing v`i can change NSW(p, v`). Fix i ∈ [N ], and fix all the variables

except v`i . Conditioned on E t, each v`i,j can change by at most 2r
`j
j . Hence, using Lemma 3, we

have that ci ≤ 2
∑

j∈[K] pj · r
`j
j . Now, applying McDiarmid’s inequality, we have

∀` ∈ [t]K : Pr
[∣∣∣NSW(p, v`)− E

[
NSW(p, v`)|E t

]∣∣∣ ≥ ε | E t] ≤ 2e
−2ε2∑
i∈[N ] c

2
i ≤ 2e

−2ε2

4N·
(∑

j∈[K] pj ·r
`j
j

)2
.

Using Equation (2), and setting ε =
√

2N log(|P|tK+3) ·
∑

j∈[K] pj · r
`j
j , we have that

∀` ∈ [t]K : Pr

∣∣∣NSW(p, v`)−NSW(p, µ∗)
∣∣∣ ≥√2N log(|P|tK+3) ·

∑
j∈[K]

pj · r
`j
j +

2

t

∣∣∣ E t
 ≤ 2

|P|tK+3
.

Next, by union bound, we get

Pr

∀` ∈ [t]K :
∣∣∣NSW(p, v`)−NSW(p, µ∗)

∣∣∣ ≥√2N log(|P|tK+3) ·
∑
j∈[K]

pj · r
`j
j +

2

t

∣∣∣ E t
 ≤ 2

|P|t3
.
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Because ntj ∈ [t] for each j ∈ [K], we have

Pr

∣∣NSW(p, µ̂t)−NSW(p, µ∗)
∣∣ ≥√2N log(|P|tK+3) ·

∑
j∈[K]

pj · rtj +
2

t

∣∣∣ E t
 ≤ 2

|P|t3
.

Extending to all policies in P: Using the union bound, we have that

Pr

∀p ∈ P :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤√2N log(|P|tK+3) ·
∑
j∈[K]

pj · rtj +
2

t

∣∣∣∣ E t
 ≥ 1− 2

t3
.

Extending to all policies in ∆K: For p ∈ ∆K , let p ∈ arg minp′∈P ‖p− p′‖1. Then, since P is a
δ-cover, we have ‖p− p‖1 ≤ δ. Thus, due to Lemma 2, we have∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤ ∑
µ∈{µ̂t,µ∗}

|NSW(p, µ)−NSW(p, µ)|

+
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣
≤ 2Nδ +

∣∣NSW(p, µ̂t)−NSW(p, µ∗)
∣∣ .

Setting δ = 1
Nt , we have

Pr

∀p ∈ ∆K :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤√2N log(|P|tK+3) ·
∑
j∈[K]

pj · rtj +
4

t

∣∣∣∣ E t
 ≥ 1− 2

t3
.

Substituting |P| ≤ (1 + 2/δ)K ≤ (3/δ)K with δ = 1
Nt yields the desired bound.

Finally, we use the following simple observation in deriving our asymptotic bounds.

Proposition 1. For constant p ∈ R,
∑T

t=1 t
p is Θ (log T ) if p = −1 and Θ

(
T p+1

)
otherwise.

4.2 Analysis of Epsilon-Greedy

We can now use these lemmas to derive the regret bounds for Epsilon-Greedy.

Theorem 2. Epsilon-Greedy is horizon-independent, and has the following expected regret at any
round T .

• If εt = Θ
(
N

2
3K

1
3 t−

1
3 log

1
3 (NKt)

)
for all t, E[RT ] = O

(
N

2
3K

1
3T

2
3 log

1
3 (NKT )

)
.

• If εt = Θ
(
N

1
3K

2
3 t−

1
3 log

2
3 (NKt)

)
for all t, E[RT ] = O

(
N

1
3K

2
3T

2
3 log

2
3 (NKT )

)
.

Proof. Fix t ∈ [T ]. Let bt denote the number of times Epsilon-Greedy performs exploration up
to round t. Note that E[bt] =

∑t
s=1 ε

s ≥ tεt, where the last step follows from the fact that εt

is monotonically decreasing in both cases of the theorem. Let θ > 0 be a constant such that
εt ≥ θ · t−1/3 in both cases of the theorem.

Define the event Bt , bt ≥ γ · tεt, where γ = 1− 1/θ. Then, by Hoeffding’s inequality, we have

Pr[¬Bt] ≤ e−2(1−γ)2θ2t1/3 = e−2t1/3 ≤ e− log t =
1

t
. (3)
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Because the algorithm performs round-robin during exploration, conditioned on Bt, we have that

ntj ≥ bt

K ≥
γ·tεt
K for each arm j,4 which implies rtj ≤

√
2K log(NKt)

γ·tεt for each j. Thus, conditioned on

Bt, we have

∀p ∈ ∆K :
∑
j∈[K]

pj · rtj ≤ max
j∈[K]

rtj ≤

√
2K log(NKt)

γ · tεt
. (4)

We are now ready to use the bounds from Lemmas 5 and 6. We focus on the event

Ctα , ∀p ∈ ∆K :
∣∣NSW(p, µ∗)−NSW(p, µ̂t)

∣∣ ≤ αt · ∑
j∈[K]

pj · rtj +
4

t
.

Conditioned on E t∧Ht, note that Ctα holds for αt = N due to Lemma 5, and for αt =
√

12NK logNKt
due to Lemma 6.

Let p̂t ∈ arg maxp∈∆K NSW(p, µ̂t). We wish to bound the regret NSW(p∗, µ∗)−NSW(p̂t, µ∗) that
Epsilon-Greedy incurs when performing exploitation in round t by choosing policy p̂t. Conditioned
on E t ∧Ht ∧ Bt, we have

NSW(p∗, µ∗)−NSW(p̂t, µ∗)

=
(
NSW(p∗, µ∗)−NSW(p∗, µ̂t)

)
+
(
NSW(p∗, µ̂t)−NSW(p̂t, µ̂t)

)
+
(
NSW(p̂t, µ̂t)−NSW(p̂t, µ∗)

)
≤

∑
p∈{p∗,p̂t}

∣∣NSW(p, µ∗)−NSW(p, µ̂t)
∣∣ ≤ 2αt

√
2K log(NKt)

γ · tεt
+

8

t
, (5)

where the penultimate transition holds because p̂t is the optimal policy under µ̂t, so NSW(p∗, µ̂t) ≤
NSW(p̂t, µ̂t), and the final transition follows from Equation (4) and the fact that E t ∧Ht imply Ctα.

We are now ready to analyze the expected regret of Epsilon-Greedy at round T . We have

E[RT ] =

T∑
t=1

E[rt] ≤
T∑
t=1

E
[
εt · 1 + (1− εt) ·

(
NSW(p∗, µ∗)−NSW(p̂t, µ∗)

)]
≤

T∑
t=1

(
εt + Pr

[
E t ∧Ht ∧ Bt

]
· E
[
NSW(p∗, µ∗)−NSW(p̂t, µ∗)

∣∣∣ E t ∧Ht ∧ Ctα]
+ Pr

[
¬E t ∨ ¬Ht ∨ ¬Bt

]
· 1

)

≤
T∑
t=1

(
εt + 2αt

√
2K log(NKt)

γ · tεt
+

8

t
+

4

t3
+

1

t

)
,

where the final transition holds due to Equation (5), Lemma 4, Lemma 6, and Equation (3). Notice
that we are using the fact that

Pr[E t ∧Ht] = Pr[E t] · Pr[Ht|E t] ≥ (1− 2/t3) · (1− 2/t3) ≥ 1− 4/t3.

To obtain the first regret bound, we set εt = Θ
(
N

2
3K

1
3 t−

1
3 log

1
3 (NKt)

)
and αt = N , and

obtain

E[RT ] = O

(
N

2
3K

1
3 log

1
3 (NKT )

T∑
t=1

t−
1
3

)
= O

(
N

2
3K

1
3T

2
3 log

1
3 (NKT )

)
.

4Technically, ntj ≥ b b
t

K
c for each arm j, but we omit the floor for the ease of presentation.
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For the second regret bound, we set εt = Θ
(
N

1
3K

2
3 t−

1
3 log

2
3 (NKt)

)
and αt =

√
12NK log(NKt),

and obtain

E[RT ] = O

(
N

1
3K

2
3 log

2
3 (NKT )

T∑
t=1

t−1/3

)
= O

(
N

1
3K

2
3T

2
3 log

2
3 (NKT )

)
.

Note that in both cases, we omit the O (1/t) and O
(
1/t3

)
terms because they are dominated

by the O
(
1/t1/3

)
term. In both cases, we use Proposition 1 at the end.

5 UCB

ALGORITHM 3: UCB
Input: Number of agents N , number of arms K

Parameters : Confidence parameter αt for each t ∈ N
// Pull each arm once

for t = 1, . . . ,K do

pt ← policy that puts probability 1 on arm t // Pull arm t deterministically

end

for t = K + 1, . . . do

Compute the estimated reward matrix µ̂t

pt ← arg maxp∈∆K NSW(p, µ̂t) + αt
∑

j∈[K] pj · rtj , where rtj ,
√

log(NKt)
nt
j

.

end

In the classical multi-armed bandit setting, UCB first pulls each arm once. Afterwards, it
merges exploration and exploitation cleverly by pulling, in each round, an arm maximizing the sum
of its estimated reward and a confidence interval term similar to rtj in Algorithm 3. Our multi-agent
variant similarly selects a policy that maximizes the estimated Nash social welfare plus a confidence
term for a policy, which simply takes a linear combination of the confidence intervals of the arms.

Unlike Explore-First and Epsilon-Greedy, which can be implemented efficiently, it is not clear if
our UCB variant admits an efficient implementation due to this step of computing arg maxp∈∆K NSW(p, µ̂)+
αt
∑

j∈[K] pjr
t
j . Due to the added linear term, the objective is no longer log-concave. This remains

a challenging open problem. However, we notice that this can also be viewed as the problem of
optimizing a polynomial over a simplex, which, while NP-hard in general, is known to admit a
PTAS when the degree is a constant [13, 14]. Hence, in our case, when the number of agents
N is a constant, this step can be computed approximately, but it remains to be seen how this
approximation translates to the final regret bounds.

We show that UCB achieves the desired
√
T dependence on the horizon (up to logarithmic

factors). In Section 6, we show that this is optimal.

Theorem 3. UCB is horizon-independent, and has the following expected regret at any round T .

• If αt = N for all t, E[RT ] = O
(
NKT

1
2 log(NKT )

)
.

• If αt =
√

12NK log(NKt) for all t, E[RT ] = O
(
N

1
2K

3
2T

1
2 log

3
2 (NKT )

)
.

Proof. Fix one of two parameter choices:
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1. αt = N for all t and c = N .

2. αt =
√

12NK log(NKt) for all t and c =
√

12NK log(NKT ).

Note that in both cases, αt ≤ c for all t. Hence, c serves as an upper bound on αt that does not
depend on t. We show that in both cases, running UCB with the αt parameter value yields a
regret bound of E[RT ] = O(cK

√
T log(NKT )). Substituting the two choices of c then yields the

two regret bounds.
Let us again focus on the event

Ctα , ∀p ∈ ∆K :
∣∣NSW(p, µ∗)−NSW(p, µ̂t)

∣∣ ≤ αt · ∑
j∈[K]

pj · rtj +
4

t
.

Recall the clean events E t and Ht defined in Lemmas 4 and 6. As argued in the proof of Theorem 2,
we have that E t ∧ Ht implies Ctα for both choices of αt; for αt = N , it follows from Lemma 5, and
for αt =

√
12NK log(NKt), it follows from Lemma 6. Using Lemmas 4 and 6 as well as the union

bound, we have that Pr[¬Ctα] ≤ 1−Pr[E t∧Ht] = 1−Pr[E t]·Pr[Ht|E t] ≤ 1−(1−2/t3)·(1−2/t3) ≤ 4/t3.
Define a clean event C∗α ,

∧
t≥
√
T C

t
α. Here, we do not care about the first

√
T rounds because

the maximum regret from these rounds is O
(√

T
)

, which is permissible given our desired regret

bounds. By the union bound, we have Pr[¬C∗α] ≤ T · 4/(
√
T )3 = 4/

√
T . Thus, C∗α is a high-

probability event. In what follows, we derive an upper bound on the expected regret conditioned
on C∗α, i.e., E[RT |C∗α]. Since conditioning on a high-probability event does not affect the expected
value significantly, the desired regret bound will then follow.

For any t ∈ [T ], conditioned on Ctα we have that

NSW(p∗, µ∗) ≤ NSW(p∗, µ̂t) + αt
∑
j∈[K]

p∗j · rtj +
4

t

≤ NSW(pt, µ̂t) + αt
∑
j∈[K]

ptj · rtj +
4

t

≤ NSW(pt, µ∗) + 2αt
∑
j∈[K]

ptj · rtj +
8

t
,

where the first and the last transition are from conditioning on Ctα, and the second transition is
because p = pt maximizes the quantity NSW(p, µ̂t) + αt

∑
j∈[K] pj · rtj in the UCB algorithm.

Let us write p[T ] = (p1, . . . , pT ) for the random variable denoting the policies used by the
algorithm, and p[T ] = (p1, . . . , pT ) to denote a specific value in (∆K)T taken by the random variable.

Instead of analyzing E[RT |C∗α] directly, we further condition on UCB choosing a specific sequence
of policies p[T ]. That is, we are interested in deriving an upper bound on E[RT |C∗α ∧ p[T ] = p[T ]].5

Interestingly, we show that this quantity is O
(
cK
√
T log(NKT )

)
for every possible p[T ].

Fix an arbitrary p[T ]. For t ∈ [T ] and j ∈ [K], define qtj =
∑t

s=1 p
s
j . Then, E[ntj |p[T ] = p[T ]] = qtj .

For each j ∈ [K], let Tj be the smallest t for which qtj ≥ 2
√
T log(NKT ) (if no such t exists,

let Tj = T ); note that given p[T ], Tj is fixed and not a random variable. Also, we have that

q
Tj
j = Θ

(√
T log(NKT )

)
for each j ∈ [K].

5Note that even after conditioning on p[T ] = p[T ], there is still randomness left in sampling actions from the policies
and sampling the rewards of those actions.
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Let us define a clean event B , ∀j ∈ [K], n
Tj
j ≥

√
T log(NKT ). We first show that this is a

high probability event. Indeed, using Hoeffding’s inequality, we have that for each j ∈ [K],

Pr
[
n
Tj
j <

√
T log(NKT )

∣∣ C∗α ∧ p[T ] = p[T ]
]
≤ Pr

[
n
Tj
j < s

Tj
j −

√
T log(NKT )

∣∣ C∗α ∧ p[T ] = p[T ]
]

≤ 1

N2K2T 2
.

Taking union bound over j ∈ [K], we have that Pr
[
¬B

∣∣ C∗α ∧ p[T ] = p[T ]
]
≤ 1

N2KT 2 .

Next, we bound E[RT |C∗α ∧ p[T ] = p[T ]] by using event B.

E
[
RT

∣∣ C∗α ∧ p[T ] = p[T ]
]

=

T∑
t=1

E
[
NSW(p∗, µ∗)−NSW(pt, µ∗)

∣∣∣ C∗α ∧ p[T ] = p[T ]
]

≤ max(K,
√
T ) +

T∑
t=max(K,

√
T )+1

(
1 · E

[
NSW(p∗, µ∗)−NSW(pt, µ∗)

∣∣ C∗α ∧ p[T ] = p[T ] ∧ B
]

+ Pr
[
¬B

∣∣ C∗α ∧ p[T ] = p[T ]
]
· 1

)

≤ max(K,
√
T ) +

T∑
t=max(K,

√
T )+1

E

2αt
∑
j∈[K]

ptj · rtj +
8

t

∣∣∣ C∗α ∧ p[T ] = p[T ] ∧ B


+ T · Pr

[
¬B

∣∣ C∗α ∧ p[T ] = p[T ]
]

(6)

≤ max(K,
√
T ) + 1 + 2c

√
2 log(NKT )

T∑
t=1

∑
j∈[K]

ptj√
cj
. (7)

The final transition holds because αt ≤ c for all t, rtj =

√
2 log(NKT )

ntj
, and conditioned on B, ntj ≥ cj

for each j ∈ [K] and t ∈ [T ], where cj = 1 if t < Tj , and cj =
√
T log(NKT ) if t ≥ Tj . Hence,

E

[
RT

∣∣∣∣∣ C∗α ∧ p[T ] = p[T ]

]
≤ max(K,

√
T ) + 1 + 2c

√
2 log(NKT )

∑
j∈[K]

T∑
t=1

ptj√
cj

= max(K,
√
T ) + 1 + 2c

√
2 log(NKT )

∑
j∈[K]

Tj−1∑
t=1

ptj
1

+

T∑
t=Tj

ptj√
T log(NKT )


≤ max(K,

√
T ) + 1 + 2c

√
2 log(NKT )

∑
j∈[K]

(
q
Tj
j +

T√
T log(NKT )

)

= O
(
cK
√
T log(NKT )

)
.

Because this bound holds for every possible p[T ], we also have that E[RT |C∗α] = O
(
cK
√
T log(NKT )

)
.

Finally, we can see that

E[RT ] = Pr[C∗α] · E[RT |C∗α] + Pr[¬C∗α] · E[RT |¬C∗α]
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≤ 1 · O
(
cK
√
T log(NKT )

)
+

4√
T
· 1 = O

(
cK
√
T log(NKT )

)
.

Recall that substituting c = N and c =
√

12NK log(NKT ) yields the two regret bounds.

We emphasize that our analysis of the multi-agent UCB differs significantly from the analysis of
the classical (single-agent) UCB. For example, the use of clean event C∗α is unique to our analysis.
More importantly, the expression in Equation (7) is also unique to our setting in which the algorithm
can “pull” a probability distribution over the arms. The corresponding expression in case of the
classical UCB turns out to be much simpler and straightforward to bound. In contrast, we need to

use additional tricks to derive the bound of O
(
cK
√
T log(NKT )

)
.

Finally, in the proof presented above, we showed that, assuming the clean event C∗α, the expected
regret is small conditioned on any sequence of policies that the UCB algorithm might use. At the
first glance, this may seem surprising. However, a keen reader can observe that the clean event
C∗α can only occur when the UCB algorithm uses a “good” sequence of policies that leads to low
expected regret. A similar phenomenon is observed in the analysis of the classical (single-agent)
UCB algorithm as well (see, e.g., [30]): assuming a different clean event, the classical UCB algorithm
is guaranteed to not pull suboptimal arms too many times.

6 Lower Bound

We lastly turn our focus to proving lower bounds on the expected regret of any algorithm for
our multi-agent multi-armed bandit (MA-MAB) problem. In the classical multi-armed bandit
problem, it is known that no algorithm can achieve a regret bound of E[RT ] = o(

√
KT ), when

the constant inside the little-Oh notation is required to be independent of the distributions in the
given instance [3]. For further discussion on bounds where the constant is allowed to depend on
the distributions in the given instance, we refer the reader to Section 7. Our goal in this section
is to reproduce this lower bound for our multi-agent multi-armed bandit problem. This would
establish that the

√
T -dependence of the expected regret of our UCB variant on the horizon T from

Theorem 3 is optimal. Note that our focus is solely on the dependence of the expected regret on T
as T is typically much larger than both the number of agents N and the number of arms K. We
leave it to future work to optimize the dependence on N and K.

First, we notice that any lower bound derived for the case of a single agent also holds when
there are N > 1 agents. This is because one can consider instances in which all but one of the
agents derive a fixed reward of 1 from every arm. Note that the contribution of such agents to the
product in the Nash social welfare expression is always 1 regardless of the policy chosen. Hence,
the Nash social welfare reduces to simply the expected utility of the remaining agent, i.e., the Nash
social welfare in an instance with only this one agent. Therefore, any lower bound on the expected
regret that holds for MA-MAB with a single agent also holds for MA-MAB with N > 1 agents.

Next, let us focus on the MA-MAB problem with N = 1 agent. At the first glance, this may
look almost identical to the classical multi-armed bandit problem. After all, if there is but one
agent, the policy maximizing the Nash social welfare places probability 1 on the arm j∗ that gives
the highest mean reward to the agent. Thus, like in the classical problem, our goal would be to
converge to pulling arm j∗ repeatedly and our regret would also be measured with respect to the
best policy which deterministically pulls arm j∗ in every round. However, there are two subtle
differences which prevent us from directly borrowing the classical lower bound.

1. In our MA-MAB problem, an algorithm is allowed to “pull” a distribution over the arms pt

in round t and learn the stochastically generated rewards for a random arm jt sampled from
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this distribution. This makes the algorithm slightly more powerful than an algorithm in the
classical MAB problem which must deterministically choose an arm to pull.

2. In our MA-MAB problem, the regret in round t is computed as the difference between the
mean reward of the best arm and the expected mean reward of an arm jt sampled according
to the distribution pt used by the algorithm. In the classical problem, one would replace the
latter term with the mean reward of the arm actually pulled in round t.

The latter distinction is not particularly troublesome because our focus is on the expected regret
of an algorithm anyway. However, the first distinction makes it impossible to directly borrow lower
bounds from the classical MAB problem.

One might wonder if there is still a way to reduce the MA-MAB problem with N = 1 agent to
the classical MAB problem. For example, given an algorithm A for MA-MAB with N = 1, what if
we construct an algorithm Â for the classical MAB and use the lower bound on the expected regret
of Â to derive a lower bound on the expected regret of A? The problem with such reduction is that
once A chooses a distribution pt, we have no control over which arm will be sampled. This choice
is crucial as it will determine what information the algorithm gets to learn. We cannot mimic
this learning process in our deterministic algorithm Â. Upon careful consideration, it also seems
difficult to express the expected regret of A as the convex combination of the expected regret of
several deterministic algorithms for the classical MAB.

Instead of aiming to find a black-box reduction to the classical problem, we therefore investigate

in detail the proof of the Ω
(√

KT
)

lower bound for the classical MAB due to Auer et al. [3,

Theorem 5.1] and observe that their argument goes through for our MA-MAB problem as well.
Instead of repeating their proof, we survey the key steps of their proof in which they assume the
algorithm to be deterministically pulling an arm and highlight why the argument holds even when
this is not the case.

• In the proof of their Lemma A.1, in the explanation of their Equation (30), they cite the
assumption that given the rewards observed in the first t − 1 rounds (they denote this by
the vector rt−1), the algorithm pulls a fixed arm it in round t. They refer to the distribution
Pi{rt|rt−1} of the reward in round t given rt−1. In their case, the randomness in rt is solely
due to stochasticity of the rewards since the arm pulled (it) is fixed. However, in our case,
one can think of Pi{rt|rt−1} as containing randomness both due to the random choice of it
and due to the stochasticity of the rewards, and their equations still go through.

• In the same equation, they consider Punif{it = i}, the probability that arm i is pulled in
round t. In their case, the only randomness is due to rt−1. In our case, there is additional
randomness due to the sampling of an arm in round t from a distribution pt. However, this
does not affect their calculations.

• Finally, in the proof of their Theorem A.2, they again consider the probability Pi{it = i} and
the same argument as above ensures that their proof continues to hold in our setting.

Thus, we have the following lower bound.

Proposition 2. For any algorithm for the MA-MAB problem, there exists a problem instance such

that E[RT ] = Ω
(√

KT
)

.
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7 Discussion

We introduce a multi-agent variant of the multi-armed bandit problem in which different agents
have different preferences over the arms and we seek to learn a tradeoff between the arms that is
fair with respect to the agents, where the Nash social welfare is used as the fairness notion. Our
work leaves several open questions and directions for future work.

Computation. As we observed in the paper, our Explore-First and Epsilon-Greedy variants can
be implemented in polynomial time. However, for our UCB variant, it is not clear if the step of
computing arg maxp∈∆K NSW(p, µ̂) + αt

∑
j∈[K] pjr

t
j can be computed in polynomial time due to

the added linear term at the end. As we mentioned in Section 5, there exists a PTAS for this
step when the number of agents N is constant, but the complexity in the general case remains
open. One might wonder if it helps to take the logarithm of the Nash social welfare, i.e., solve
arg maxp∈∆K log NSW(p, µ̂) +αt

∑
j∈[K] pjr

t
j . Indeed, since log NSW is a concave function, this can

be solved efficiently. However, our key lemmas use bounds on the NSW function that do not hold
for log NSW function. Further, such an approach would yield a regret bound where the regret is in
terms of log NSW, which cannot be easily converted into regret in terms of NSW.

Logarithmic regret bound for UCB. In the classical stochastic multi-armed bandit setting, UCB
has two known regret bounds with optimal dependence on T . There is an instance-independent
bound that grows roughly as

√
T (where the constants depend only on K and not on the unknown

mean rewards in the given instance) and an instance-dependent bound that grows roughly as log T
(where the constants may depend on the unknown mean rewards in the given instance in addition
to K). While we recover the former bound in our multi-agent setting, we were not able to derive
an instance-dependent logarithmic regret bound. This remains a major challenging open problem.

Improved lower bounds. In Section 6, we observe that the instance-independent Ω(
√
KT ) lower

bound from the classical setting also holds in our multi-agent setting. Given that our upper bounds
increase with N , it would be interesting to see if we can derive lower bounds that also increase with
N . Deriving instance-dependent lower bounds in our setting would also be interesting.

Fairness. While maximizing the Nash social welfare is often seen as a fairness guarantee of its
own, as discussed in the introduction, the policy with the highest Nash social welfare is also known
to satisfy other fairness guarantees. However, it is not clear if the additive regret bounds we derive
in terms of the Nash social welfare also translate to bounds on the amount by which these other
fairness guarantees are violated. Considering other fairness guarantees and bounding their total
violation is also an interesting direction for the future.

Multi-agent extensions. More broadly, our work opens up the possibility of designing multi-
agent extensions of other multi-armed bandit problems. For example, one can consider a multi-
agent dueling bandit problem, in which an algorithm asks an agent (or all agents) to compare two
arms rather than report their reward for a single arm. Meaningfully defining the regret for such
frameworks and designing algorithms that bound it is an exciting future direction.
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ordinate with coordination graphs in repeated single-stage multi-agent decision problems. In
Proceedings of the 35th International Conference on Machine Learning (ICML). 482–490.

[6] F. Brandl, F. Brandt, D. Peters, C. Stricker, and W. Suksompong. 2020. Funding Public
Projects: A Case for the Nash Product Rule. Manuscript.

[7] F. Brandt, V. Conitzer, U. Endress, J. Lang, and A. D. Procaccia (Eds.). 2016. Handbook of
Computational Social Choice. Cambridge University Press.

[8] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. 2019. The
Unreasonable Fairness of Maximum Nash Welfare. ACM Transactions on Economics and
Computation (TEAC) 7, 3 (2019), 1–32.

[9] M. Chakraborty, K. Y. P. Chua, S. Das, and B. Juba. 2017. Coordinated Versus Decentralized
Exploration In Multi-Agent Multi-Armed Bandits.. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI). 164–170.

[10] R. Cole, N. Devanur, V. Gkatzelis, K. Jain, T. Mai, V. V. Vazirani, and S. Yazdanbod. 2017.
Convex Program Duality, Fisher Markets, and Nash Social Welfare. In Proceedings of the 18th
ACM Conference on Economics and Computation (EC). 459–460.

[11] R. Cole and V. Gkatzelis. 2018. Approximating the Nash Social Welfare with Indivisible Items.
SIAM J. Comput. 47, 3 (2018), 1211–1236.

[12] V. Conitzer, R. Freeman, and N. Shah. 2017. Fair Public Decision Making. In Proceedings of
the 18th ACM Conference on Economics and Computation (EC). 629–646.

[13] E. de Klerk, M. Laurent, and P. A. Parrilo. 2006. A PTAS for the Minimization of Polynomials
of Fixed Degree Over the Simplex. Theoretical Computer Science 361, 2-3 (2006), 210–225.

[14] E. de Klerk, M. Laurent, and Z. Sun. 2015. An Alternative Proof of a PTAS for Fixed-Degree
Polynomial Optimization Over the Simplex. Mathematical Programming 151, 2 (2015), 433–
457.

[15] E. Eisenberg and D. Gale. 1959. Consensus of subjective probabilities: The pari-mutuel
method. The Annals of Mathematical Statistics 30, 1 (1959), 165–168.

[16] B. Fain, A. Goel, and K. Munagala. 2016. The Core of the Participatory Budgeting Problem.
In Proceedings of the 12th Conference on Web and Internet Economics (WINE). 384–399.

[17] B. Fain, K. Munagala, and N. Shah. 2018. Fair Allocation of Indivisible Public Goods. In
Proceedings of the 19th ACM Conference on Economics and Computation (EC). 575–592.

[18] R. Freeman, S. M. Zahedi, and V. Conitzer. 2017. Fair and Efficient Social Choice in Dynamic
Settings. In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). 4580–4587.

20



[19] J. Garg, M. Hoefer, and K. Mehlhorn. 2018. Approximating the Nash Social Welfare with
Budget-Additive Valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2326–2340.

[20] J. Garg and P. McGlaughlin. 2019. Improving Nash Social Welfare Approximations. In Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence (IJCAI). 294–300.

[21] S. Gillen, C. Jung, M. Kearns, and A. Roth. 2018. Online learning with an unknown fair-
ness metric. In Proceedings of the 32nd Annual Conference on Neural Information Processing
Systems (NIPS). 2600–2609.

[22] M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth. 2016. Fairness in learning: Classic
and contextual bandits. In Proceedings of the 30th Annual Conference on Neural Information
Processing Systems (NIPS). 325–333.

[23] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. 2010. Regret bounds for sleeping experts
and bandits. Machine learning 80, 2-3 (2010), 245–272.

[24] R. Kleinberg, A. Slivkins, and E. Upfal. 2008. Multi-Armed Bandits in Metric Spaces. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC). 681–690.

[25] T. L. Lai and H. Robbins. 1985. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6, 1 (1985), 4–22.

[26] E. Lee. 2017. APX-Hardness of Maximizing Nash Social Welfare with Indivisible Items. Inform.
Process. Lett. 122 (2017), 17–20.

[27] Y. Liu, G. Radanovic, C. Dimitrakakis, D. Mandal, and D. C. Parkes. 2017. Calibrated fairness
in bandits. arXiv preprint arXiv:1707.01875.

[28] H. Moulin. 2003. Fair Division and Collective Welfare. MIT Press.

[29] V. Patil, G. Ghalme, V. Nair, and Y. Narahari. 2020. Achieving Fairness in Stochastic Multi-
Armed Bandits. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI).
5379–5386.

[30] A. Slivkins. 2019. Introduction to Multi-Armed Bandits. Foundations and Trends in Machine
Learning 12, 1-2 (2019), 1–286.

[31] W. R. Thompson. 1933. On the Likelihood that One Unknown Probability Exceeds Another
in View of the Evidence of Two Samples. Biometrika 25, 3/4 (1933), 285–294.

[32] M. J. Wainwright. 2019. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48.
Cambridge University Press.

[33] M. Woodroofe. 1979. A One-Armed Bandit Problem with a Concomitant Variable. J. Amer.
Statist. Assoc. 74, 368 (1979), 799–806.

[34] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. 2012. The K-Armed Dueling Bandits
Problem. J. Comput. System Sci. 78, 5 (2012), 1538–1556.

21


