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Abstract

We revisit the recently developed framework of proportionally fair clustering,
where the goal is to provide group fairness guarantees that become stronger for
groups of data points (agents) that are large and cohesive. Prior work applies
this framework to centroid clustering, where the loss of an agent is its distance
to the centroid assigned to its cluster. We expand the framework to non-centroid
clustering, where the loss of an agent is a function of the other agents in its cluster,
by adapting two proportional fairness criteria — the core and its relaxation, fully
justified representation (FJR) — to this setting.
We show that the core can be approximated only under structured loss functions,
and even then, the best approximation we are able to establish, using an adaptation
of the GREEDYCAPTURE algorithm developed for centroid clustering [1, 2], is
unappealing for a natural loss function. In contrast, we design a new (inefficient)
algorithm, GREEDYCOHESIVECLUSTERING, which achieves the relaxation FJR
exactly under arbitrary loss functions, and show that the efficient GREEDYCAP-
TURE algorithm achieves a constant approximation of FJR. We also design an
efficient auditing algorithm, which estimates the FJR approximation of any given
clustering solution up to a constant factor. Our experiments on real data suggest that
traditional clustering algorithms are highly unfair, whereas GREEDYCAPTURE is
considerably fairer and incurs only a modest loss in common clustering objectives.

1 Introduction

Clustering is a fundamental task in unsupervised learning, where the goal is to partition a set of n
points into k clusters C = (C1, . . . , Ck) in such a way that points within the same cluster are close
to each other (measured by a distance function d) and points in different clusters are far from each
other. This goal is materialized through a variety of objective functions, the most popular of which is
the k-means objective:

∑k
i=1

1
|Ci| ·

∑
x,y∈Ci

d(x, y)2.

When the points are in a Euclidean space, the k-means objective can be rewritten as∑k
i=1

∑
x∈Ci

d(x, µi)
2, where µi =

1
|Ci|

∑
x∈Ci

x is the mean (also called the centroid) of cluster
Ci.1 This gives rise to centroid clustering, where deciding where to place the k cluster centers is
viewed as the task and the clusters are implicitly formed when each point is assigned to its nearest
cluster center.

In the literature on fairness in centroid clustering, the loss of each data point (hereinafter, agent) is
defined as the distance to the nearest cluster center [1]; here, the cluster centers do not merely help
rewrite the objective, but play an essential role. This is a reasonable model for applications such as
facility location, where the loss of an agent indeed depends on how much they have to travel to get to
the nearest facility.

1Centroids can be defined in non-Euclidean spaces, e.g., as µi = argminy
1

|Ci|
∑

x∈Ci
d(x, y)2.
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But in other applications of clustering, we simply partition the agents and agents prefer to be close
to other agents in their cluster—there are no “cluster centers” that they prefer to be close to. For
example, in clustered federated learning [3], the goal is to cluster the agents and have agents in each
cluster collaboratively learn a model; naturally, agents would want other agents in their cluster to
have similar data distributions, so the model learned is accurate on their own data distribution.2 Other
examples where we want to cluster nearby points together without defining cluster centers include
document clustering [6], image segmentation for biomedical applications [7], and social network
segmentation [8].

While there exist plenty of clustering objectives which do not require defining cluster centers (such as
the first formulation of the k-means objective above), in order to reason about fairness we need to
define the loss of each agent under a non-centroid clustering and explore the tradeoff between the
losses of different agents. We initiate the study of proportional fairness in non-centroid clustering.

We follow the idea of proportional fairness outlined in a recent line of work [1, 2, 9, 10], which
ensures that no group of at least n/k agents should “improve” (formalized later) by forming a cluster
of its own.3 Our main research questions are:

Can we obtain compelling proportional fairness guarantees for non-centroid clus-
tering as with centroid clustering? Do the algorithms known to work well for
centroid clustering also work well for non-centroid clsutering? Can we audit the
proportional fairness of a given algorithm?

1.1 Our Contributions

In non-centroid clustering, we are given a set N of n points (agents) and the desired number of
clusters k. The goal is to partition the agents into (at most) k clusters C = (C1, . . . , Ck). Each
agent i has a loss function ℓi, and her loss under clustering C is ℓi(C(i)), where C(i) denotes the
cluster containing her. We study both the general case where the loss functions of the agents can be
arbitrary, and structured cases where the loss of an agent for a cluster is the average or maximum of
her distances — according to a given distance metric — to the agents in the cluster.

We study two proportional fairness guarantees, formally defined in Section 2: the core [11] and its
relaxation, fully justified representation (FJR) [12]. Both have been studied for centroid clustering [1,
2, 10], but we are the first to study them in non-centroid clustering.

A summary of a selection of our results is presented in Table 1, with the cell values indicating
approximation ratios (lower is better, 1 is optimal).

Loss Functions Core UB Core LB FJR

Arbitrary ∞ 1
Average O(n/k) (polytime) 1.3 1 (4 in polytime)

Maximum 2 (polytime) 1 1 (2 in polytime)

Table 1: The feasible core and FJR approximation guarantees, both existentially and in polynomial
time. In each case, we can obtain a better FJR approximation than the core approximation.

Our results show the promise of FJR: while it is a slight relaxation of the core, it is satisfiable even
under arbitrary loss functions, whereas the core can be unsatisfiable even under more structured
loss functions. The existential result for FJR is achieved using a simple (but inefficient) algorithm
we design, GREEDYCOHESIVECLUSTERING, which is an adaptation of the Greedy Cohesive Rule
from social choice theory [12]. The core approximations as well as efficient FJR approximations are
achieved using an efficient version of it, which turns out to be an adaptation of the GREEDYCAPTURE
algorithm that has been introduced for centroid clustering [1, 2]. We show that the FJR approximation
achieved by GREEDYCAPTURE stems from the fact that its key subroutine achieves a constant
approximation of that of the GREEDYCOHESIVECLUSTERING algorithm.

2Prior work formulates this as centroid clustering [4, 5], where the principal also chooses a model for each
cluster, but this goes against the federated learning setting.

3Groups with fewer than n/k agents are not deemed to be entitled to form a cluster.
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Next, we turn to auditing the FJR approximation of a given clustering. Surprisingly, we show that
the same technique that we use to algorithmically achieve a constant approximation of FJR can be
used to also estimate the FJR approximation of any given clustering, up to a constant factor (4 for the
average loss and 2 for the maximum loss).

We compare GREEDYCAPTURE to popular clustering methods, k-means++ and k-medoids, on three
real datasets. We observe that in terms of both average and maximum loss, GREEDYCAPTURE
provides significantly better approximations to both FJR and the core, and this fairness advantage
comes at only a modest cost in terms of traditional clustering objectives, including those that k-
means++ and k-medoids are designed to optimize.

1.2 Related Work

In recent years, there has been an active line of research related to fairness in clustering [13]. With
a few exceptions, most of the work focuses on centroid-based clustering, where each agent cares
about their distance from the closest cluster center. Mostly related to ours is the work by Chen et al.
[1], who introduced the idea of proportionality through the core in centroid clustering. Their work
has been revisited by Micha and Shah [2] for specific metric spaces. More recently, Aziz et al. [10]
also introduced the relaxation of the core, fully justified representation, in centroid-based clustering.
While one of our main algorithms, GREEDYCAPTURE, is a natural adaptation of the main algorithm
used in all these works, there are significant differences between the two settings.

First, in centroid-based clustering, GREEDYCAPTURE provides a constant approximation to the
core[1], while in the non-centroid case this approximation is not better than O(n/k) for the average
loss function. Second, in centroid-based clustering, GREEDYCAPTURE returns a solution that satisfies
FJR exactly[10]. Here, for the non-centroid case, even though we know that an exact FJR solution
always exists, GREEDYCAPTURE is shown to just provide an approximation better than 4 for the
average loss and 2 for the maximum loss. In more specific metric spaces, Micha and Shah [2] show
that a solution in the core always exists in the line. Here, we demonstrate that while this remains true
for the maximum loss, it is not the case for the average loss, where the core can be empty. Finally,
Chen et al. [1] conducted experiments using real data in which k-means++ performs better than
GREEDYCAPTURE. However, for the same datasets, we found that GREEDYCAPTURE significantly
outperforms k-means++ in the non-centroid setting.

Fairness in non-centroid clustering has received significantly less attention. Ahmadi et al. [14]
recently introduced a notion of individual stability which indicates that no agent should prefer another
cluster over the one they have been assigned to. Micha and Shah [2] studied the core when the
goal is to create a balanced clustering (i.e. all clusters have almost equal size) and the agents have
positive utilities for other agents. More generally, the hedonic games literature (e.g., see [15] for
an early survey on the topic and [16] for a recent model that is close to the current paper) is also
relevant to non-centroid clustering as it examines coalition formation. While the core concept has
been extensively studied in hedonic games, there are two main differences with our work. First,
subsets of any size can deviate to form their own cluster, rather than only proportionally eligible ones,
and second, no approximate guarantees to the core have been provided, to the best of our knowledge.

2 Model

For t ∈ N, let [t] ≜ {1, . . . , t}. We are given a set N of n agents, and the desired number of clusters
k. Each agent i ∈ N has an associated loss function ℓi : 2

N \ 2N\{i} → R⩾0, where ℓi(S) is the
cost to agent i for being part of group S. A k-clustering4 C = (C1, . . . , Ck) is a partition of N into
k clusters,5 where Ct ∩ Ct′ = ∅ for t ̸= t′ and ∪kt=1Ct = N . With slight abuse of notation, denote
by C(i) the cluster that contains agent i. Then, the loss of agent i under this clustering is ℓi(C(i)).

Loss functions. We study three classes of loss functions; for each class, we seek fairness guarantees
that hold for any loss functions the agents may have from that class. A distance metric over N is
given by d : N ×N → R⩾0, which satisfies: (i) d(i, i) = 0 for all i ∈ N , (ii) d(i, j) = d(j, i) for all
i, j ∈ N , and (iii) d(i, j) ⩽ d(i, k) + d(k, j) for all i, j, k ∈ N (triangle inequality).

4We simply call it clustering when the value of k is clear from the context.
5Technically, we have up to k clusters as Ct is allowed to be empty for any t ∈ [k].
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• Arbitrary losses. In this most general class, the loss ℓi(S) can be an arbitrary non-negative
number for each agent i ∈ N and cluster S ∋ i.

• Average loss. Here, we are given a distance metric d over N , and ℓi(S) =
1
|S|

∑
j∈S d(i, j)

for each agent i ∈ N and cluster S ∋ i. Informally, agent i prefers the agents in her cluster
to be close to her on average.

• Maximum loss. Again, we are given a distance metric d over N , and ℓi(S) = maxj∈S d(i, j)
for each agent i ∈ N and cluster S ∋ i. Informally, agent i prefers that no agent in her
cluster to be too far from her.

3 Core

Perhaps the most widely recognized proportional fairness guarantee is the core. Informally, an
outcome is in the core if no group of agents S ⊆ N can choose another (partial) outcome that
(i) they are entitled to choose based on their proportion of the whole population (|S|/|N |), and (ii)
makes every member of group S happier. The core was proposed and widely studied in the resource
allocation literature from microeconomics [11, 17, 18], and it has been adapted recently to centroid
clustering [1, 2]. When forming k clusters out of n agents, a group of agents S is deemed worthy of
forming a cluster of its own if and only if |S| ⩾ n/k. In centroid clustering, such a group can choose
any location for its cluster center. In the following adaptation to non-centroid clustering, no such
consideration is required.
Definition 1 (α-Core). For α ⩾ 1, a k-clustering C = (C1, . . . , Ck) is said to be in the α-core if
there is no group of agents S ⊆ N with |S| ⩾ n/k such that α · ℓi(S) < ℓi(C(i)) for all i ∈ S. We
refer to the 1-core simply as the core.

If a group S exists that demonstrates a violation of the α-core guarantee, we say that it deviates and
refer to it as the deviating coalition. We begin by proving a simple result that no finite approximation
of the core can be guaranteed for arbitrary losses.
Theorem 1. For arbitrary losses, there exists an instance in which no α-core clustering exists for
any finite α.

Next, for the more structured average loss function, we prove that the core can still be empty, albeit
there is now room for a finite approximation. The proof, with an intricate construction, is delegated
to Appendix A.
Theorem 2. For the average loss, there exists an instance in which no α-core clustering exists for
α < 1+

√
3

2 ≈ 1.366.

To complement Theorems 1 and 2, we show the existence of a clustering in the O(n/k)-core (resp.,
2-core) for the average (resp., maximum) loss. Despite significant effort, we are unable to determine
whether the core is always non-empty for the maximum loss, or whether a constant approximation of
the core can be guaranteed for the average loss, which we leave as tantalizing open questions.

Open Question 1: For the maximum loss, does there always exist a clustering in the core?

Open Question 2: For the average loss, does there always exist a clustering in the α-core for
some constant α?

Our algorithms. For the positive result, we design a simple greedy algorithm, GREEDYCOHE-
SIVECLUSTERING (Algorithm 1). It uses a subroutine A, which, given a subset of agents N ′ ⊆ N ,
metric d, and threshold τ , finds a “cohesive” cluster S. Here, the term “cohesive” is informally used,
but we will see a formalization in the next section. The threshold τ is meant to indicate the smallest
size at which a group of agents deserve to form a cluster, but A can return a cluster of size greater,
equal, or less than τ .

The algorithm we use as A in this section is given as SMALLESTAGENTBALL (Algorithm 4). It finds
the smallest ball centered at agent that captures at least τ agents, and returns a set of τ agents from
this ball. We call this algorithm with the natural choice of τ = ⌈n/k⌉, so GREEDYCOHESIVECLUS-
TERING(SMALLESTAGENTBALL) iteratively finds the smallest agent-centered ball containing ⌈n/k⌉
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ALGORITHM 1: GREEDYCOHESIVECLUSTERING(A)
Input: Set of agents N , metric d, number of clusters k
Output: k-clustering C = (C1, . . . Ck)
N ′ ← N ; // Remaining set of agents
j ← 1; // Current cluster number
while N ′ ̸= ∅ do

Cj ← A(N ′, d, ⌈n/k⌉); // Find and remove the next cohesive cluster
N ′ ← N ′ \ Cj ;
j ← j + 1;

end
Cj , Cj+1, . . . , Ck ← ∅;
return C = (C1, . . . , Ck);

ALGORITHM 2: SMALLESTAGENTBALL

Input: Subset of agents N ′ ⊆ N , metric d, threshold integer τ
Output: Cluster S
if |N ′| ⩽ τ then return S ← N ′;
for i ∈ N ′ do

ℓi ← τ -th closest agent in N ′ to agent i; // Ties are broken arbitrarily
ri ← d(i, ℓi); // Smallest ball centered at agent i capturing at least τ agents

end
i∗ ← argmini∈N ′ ri;
return S ← the set of τ closest agents in N ′ to agent i∗;

agents and removes ⌈n/k⌉ in that ball, until fewer than ⌈n/k⌉ agents remain, at which point all
remaining agents are put into one cluster and any remaining clusters are left empty.

Overall, GREEDYCOHESIVECLUSTERING(SMALLESTAGENTBALL) is an adaptation of the
GREEDYCAPTURE algorithm proposed by Chen et al. [1] for centroid clustering with two key
differences in our non-centroid case: (i) while they grow balls centered at feasible cluster center
locations, we grow balls centered at the agents, and (ii) while they continue to grow a ball that
already captured ⌈n/k⌉ agents (and any agents captured by this ball in the future are placed in the
same cluster), we stop a ball as soon as it captures ⌈n/k⌉ agents, which is necessary in our non-
centroid case.6 Nonetheless, due to its significant resemblance, we refer to the particular instantiation
GREEDYCOHESIVECLUSTERING(SMALLESTAGENTBALL) as GREEDYCAPTURE hereinafter. The
following result is one of our main results, with an intricate proof found in Appendix A.

Theorem 3. For the average (resp., maximum) loss, the GREEDYCAPTURE algorithm is guaranteed
to return a clustering in the (2 · ⌈n/k⌉ − 3)-core (resp., 2-core) in O(kn) time complexity, and these
bounds are (almost) tight.

In many applications of clustering, such as clustered federated learning, the average loss is realistic
because the agent’s loss depends on all the agents in her cluster, and not just on a single most distant
agent. Hence, it is a little disappointing that the only approximation to the core that we are able to
establish in this case is α = O(n/k), which is rather unsatisfactory. We demonstrate two ways to
circumvent this negative result. First, we consider demanding that any deviating coalitions be of
size at least δ · n/k for some δ > 1. In Appendix B, we show that any constant δ > 1 reduces the
approximation factor α to a constant. In the next section, we explore a different approach: we relax
the core to a slightly weaker fairness guarantee, which we show can be satisfied exactly, even under
arbitrary losses.

6In centroid clustering, additional agents captured later on do not change the loss of the initial ⌈n/k⌉ agents
captured as loss is defined by the distance to the cluster center, which does not change. However, in non-centroid
clustering, additional agents can change the loss of the initially captured agents, even from zero to positive,
causing infinite core approximation when these agents deviate.
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4 Fully Justified Representation

Peters et al. [12] introduced fully justified representation (FJR) as a relaxation of the core in the context
of approval-based committee selection. The following definition is its adaptation to non-centroid
clustering. Informally, for a deviating coalition S, the core demands that the loss ℓi(S) of each
member i after deviation be lower than her own loss before deviation, i.e., ℓi(C(i)). FJR demands
that it be lower than the minimum loss of any member before deviation, i.e., minj∈S ℓj(C(j)).
Definition 2 (α-Fully Justified Representation (α-FJR)). For α ⩾ 1, a k-clustering C = (C1, . . . , Ck)
satisfies α-fully justified representation (α-FJR) if there is no group of agents S ⊆ N with |S| ⩾ n/k
such that α · ℓi(S) < minj∈S ℓj(C(j)) for each i ∈ S, i.e., if α ·maxi∈S ℓi(S) < minj∈S ℓj(C(j)).
We refer to 1-FJR simply as FJR.

We easily see that α-FJR is a relaxation of α-core.
Proposition 1. For α ⩾ 1, α-core implies α-FJR for arbitrary loss functions.

Proof. Suppose that a clustering C is in the α-core. Thus, for every S ⊆ N with S ⩾ n/k, there
exists i ∈ S for which α · ℓi(S) ⩾ ℓi(C(i)) ⩾ minj∈S ℓj(C(j)), so the clustering is also α-FJR.

4.1 Arbitrary Loss Functions

We prove that an (exactly) FJR clustering is guaranteed to exist, even for arbitrary losses. For this,
we need to define the following computational problem.
Definition 3 (MOST COHESIVE CLUSTER). Given a set of agents N and a threshold τ , the MOST
COHESIVE CLUSTER problem asks to find a cluster S ⊆ N of size at least τ such that the maximum
loss of any i ∈ S for S is minimized, i.e., find argminS⊆N ′:|S|⩾τ maxi∈S ℓi(S).

For λ ⩾ 1, a λ-approximate solution S satisfies λ ·maxi∈S ℓi(S) ⩽ maxi∈S′ λi(S
′) for all S′ ⊆ N

with |S′| ⩾ τ , and a λ-approximation algorithm returns a λ-approximate solution on every instance.

We show that plugging in a λ-approximation algorithmA to the MOST COHESIVE CLUSTER problem
into the GREEDYCOHESIVECLUSTERING algorithm designed in the previous section yields a λ-
FJR clustering. In order to work with arbitrary losses, we need to consider a slightly generalized
GREEDYCOHESIVECLUSTERING algorithm, which takes the loss functions ℓi as input instead of a
metric d, and passes these loss functions to algorithm A.
Theorem 4. For arbitrary losses, α ⩾ 1, and an α-approximation algorithm A for the MOST
COHESIVE CLUSTER problem, GREEDYCOHESIVECLUSTERING(A) is guaranteed to return a
α-FJR clustering. Hence, an (exactly) FJR clustering is guaranteed to exist.

Proof. Suppose for contradiction that the k-clustering C = {C1, . . . Ck} returned by GREEDYCOHE-
SIVECLUSTERING(A) on an instance is not α-FJR. Then, there exists a group S ⊆ N with |S| ⩾ n/k
such that α ·maxi∈S ℓi(S) < mini∈S ℓi(C(i)). Let i∗ be the first agent in S that was assigned to a
cluster during the execution of GREEDYCOHESIVECLUSTERING, by calling A on a subset of agents
N ′. Note that S ⊆ N ′. Then, we have that maxi∈C(i∗) ℓi(C(i∗)) ⩾ ℓi∗(C(i∗)) > α ·maxi∈S ℓi(S),
which contradicts A being an α-approximation algorithm for the MOST COHESIVE CLUSTER
problem. Hence, GREEDYCOHESIVECLUSTERING(A) must return an α-FJR clustering.

Using an exact algorithm A for the MOST COHESIVE CLUSTER problem (e.g., the inefficient
brute-force algorithm), we get that a 1-FJR clustering is guaranteed to exist.

4.2 Average and Maximum Loss Functions

Let A∗ be an exact algorithm for the MOST COHESIVE CLUSTER problem for the average (resp.,
maximum) loss. First, we notice that we cannot expect it to run in polynomial time, even for these
structured loss functions. This is because it can be used to detect whether a given undirected graph
admits a clique of at least a given size,7 which is an NP-complete problem. Hence, GREEDYCOHE-
SIVECLUSTERING(A∗) is an inefficient algorithm.

7To detect whether an undirected graph G = (V,E) has a clique of size at least t, we run A∗ with each node
being an agent, the distance between two agents being 1 if they are neighbors and 2 otherwise, and k = n/t. A
clique of size at least t exists in G if and only if a cluster S exists with |S| ⩾ n/k = t and maxi∈S ℓi(S) = 1.
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One can easily check that the proof of Theorem 3 extends to show that it achieves not only 1-FJR
(Theorem 4), but also in the O(n/k)-core (resp., 2-core) for the average (resp., maximum) loss.
For the core, GREEDYCAPTURE is an obvious improvement as it achieves the same approximation
ratio but in polynomial time. For FJR, we show that GREEDYCAPTURE still achieves a constant
approximation in polynomial time. We prove this by showing that the SMALLESTAGENTBALL
algorithm used by GREEDYCAPTURE achieves the desired approximation to the MOST COHESIVE
CLUSTER problem, and utilizing Theorem 4.
Lemma 1. For the average (resp., maximum) loss, SMALLESTAGENTBALL is a 4-approximation
(resp., 2-approximation) algorithm for the MOST COHESIVE CLUSTER problem, and this is tight.

Plugging in Lemma 1 into Theorem 4, we get the following.
Corollary 1. The (efficient) GREEDYCAPTURE algorithm is guaranteed to return a clustering that is
4-FJR (resp., 2-FJR) for the average (resp., maximum) loss.

Determining the best FJR approximation achievable in polynomial time remains an open question.

Open Question 3: For the average (or maximum) loss, what is the smallest α for which an α-FJR
clustering can be computed in polynomial time, assuming P ̸= NP?

Also, while Theorem 4 shows that exact FJR is achievable for the average and maximum losses, a
single clustering may not achieve FJR for both losses simultaneously (the algorithm used in Theorem 4
depends on the loss function). In contrast, GREEDYCAPTURE does not depend on whether we are
using the average or the maximum loss. Thus, the clustering it produces is simultaneously 4-FJR for
the average loss and 2-FJR for the maximum loss (Corollary 1); this is novel even as an existential
result, ignoring the fact that it can be achieved using an efficient algorithm GREEDYCAPTURE. We
do not know how much this existential result can be improved upon.

Open Question 4: What is the smallest α such that there always exists a clustering that is
simultaneously α-FJR for both the average loss and the maximum loss?

4.3 Auditing FJR

Next, we turn to the question of auditing the FJR approximation of a given clustering. Because
guarantees such as the core and FJR are defined with exponentially many constraints, it is difficult to
determine the exact approximation ratio achieved by a given solution efficiently, which is why prior
work has not studied auditing for proportional fairness guarantees. Nonetheless, we show that the
same ideas that we used to find an (approximately) FJR clustering can also be used to (approximately)
audit the FJR approximation of any given clustering.
Definition 4 (λ-Approximate FJR Auditing). We say that algorithm A is a λ-approximate FJR
auditing algorithm if, given any clustering C, it returns θ such that the exact FJR approximation of C
(i.e., the smallest α such that C is α-FJR) is in [θ, λ · θ].

We design another parametric algorithm, AUDITFJR(A) (presented as Algorithm 3 in Appendix A),
which iteratively callsA to find a ‘cohesive’ cluster S, similarly to GREEDYCOHESIVECLUSTERING.
But while GREEDYCOHESIVECLUSTERING removes all the agents in S from further consideration,
AUDITFJR removes only the agent in S with the smallest loss under the given clustering C from
further consideration. Thus, instead of finding up to k cohesive clusters, it finds up to n cohesive
clusters. It returns the maximum FJR violation of C demonstrated by any of these n possible deviating
coalitions (recall that the exact FJR approximation of C is the maximum FJR violation across all the
exponentially many possible deviating coalitions of size at least ⌈n/k⌉).
We show that if A was a λ-approximation algorithm for the MOST COHESIVE CLUSTER problem,
then the resulting algorithm is a λ-approximate FJR auditing algorithm. In particular, if we were to
solve the MOST COHESIVE CLUSTER problem exactly in each iteration (which would be inefficient),
the maximum FJR violation across those n cohesive clusters found would indeed be the maximum
FJR violation across all the exponentially many deviating coalitions, an apriori nontrivial insight.
Fortunately, we can at least plug in the SMALLESTAGENTBALL algorithm, which we know achieves
constant approximation to the MOST COHESIVE CLUSTER problem (Lemma 1).
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(a) Core violation, average loss
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(b) FJR violation, average loss
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(c) Core violation, maximum loss
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(d) FJR violation, maximum loss
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(e) Average within-cluster distance
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Figure 1: Census Income Dataset

Theorem 5. For λ ⩾ 1, if A is a λ-approximation algorithm to the MOST COHESIVE CLUSTER
problem, then AUDITFJR(A) is a λ-approximate FJR auditing algorithm. Given Lemma 1, it follows
that for the average (resp., maximum) loss, AUDITFJR(SMALLESTAGENTBALL) is an efficient
4-approximate (resp., 2-approximate) FJR auditing algorithm.

Unfortunately, the technique from Theorem 5 does not extend to auditing the core. This is because it
requires upper bounding mini∈S

ℓi(C(i))
ℓi(S) (instead of mini∈S ℓi(C(i))

maxi∈S ℓi(S) ); this can be upper bounded by
ℓi∗ (C(i∗))

ℓi∗ (S) , but we cannot lower bound ℓi∗(S). The fact that A approximates the MOST COHESIVE

CLUSTER problem only lets us lower bound maxi∈S ℓi(S). We leave it as an open question whether
an efficient, constant-approximate core auditing algorithm can be devised.

Open Question 5: Does there exist a polynomial-time, α-approximate core auditing algorithm
for some constant α?

For the maximum loss, we can show that our 2-approximate FJR auditing algorithm is the best one
can hope for in polynomial time; the proof is in Appendix A. The case of average loss remains open.
Theorem 6. Assuming P ̸= NP, there does not exist a polynomial-time λ-approximate FJR auditing
algorithm for the maximum loss, for any λ < 2.

5 Experiments

In this section, we empirically compare GREEDYCAPTURE with the popular clustering algorithms
k-means++ and k-medoids on real data. Our focus is on the tradeoff between fairness (measured by
the core and FJR) and accuracy (measured by traditional clustering objectives) they achieve.

Datasets. We consider three different datasets from the UCI Machine Learning Repository [19],
namely Census Income, Diabetes, and Iris. For the first two datasets, each data point corresponds to a
human being, and it is reasonable to assume that each individual prefers to be clustered along with
other similar individuals. We also consider the third dataset for an interesting comparison with the
empirical work of Chen et al. [1], who compared the same algorithms but for centroid clustering.

The Census Income dataset contains demographic and economic characteristics of individuals, which
are used to predict whether an individual’s annual income exceeds a threshold. For our experiments,
we keep all the numerical features (i.e. age, education-num, capital-gain, capital-loss, and
hours-per-week) along with sex, encoded as binary values. There are in total 32,561 data points,
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each with a sample weight attribute (fnlwgt). The Diabetes dataset contains numerical features, such
as age and blood pressure, for about 768 diabetes patients. The Iris dataset consists of 150 records of
numerical features related to the petal dimensions of different types of iris flowers.

Measures. For fairness, we measure the true FJR and core approximations of each algorithm with
respect to both the average and maximum losses. For accuracy, we use three traditional clustering
objectives: the average within-cluster distance

∑
t∈[k]

1
|Ct| ·

∑
i,j∈Ct

d(i, j), termed cost by Ahmadi
et al. [14], as well as the popular k-means and k-medoids objectives.

Experimental setup. We implement the standard k-means++ and k-medoids clustering algorithms
from the Scikit-learn project8, averaging the values for each measure over 20 runs, as their outcomes
depend on random initializations. The computation of GREEDYCAPTURE neither uses randomization
nor depends on the loss function with respect to which the core or FJR approximation is measured.
Since calculating core and FJR approximations requires considerable time, for both the Census
Income and Diabetes datasets, we sample 100 data points and plot the means and standard deviations
over 40 runs. For the former, we conduct weighted sampling according to the fnlwgt feature.

Results. In Figure 1, we see the results for the Census Income dataset; the results for k-means and
k-medoids objectives for this dataset, along with results for the other two datasets, are relegated
to Appendix D due to being qualitatively similar to the results presented here. According to all
four fairness metrics, GREEDYCAPTURE is significantly fairer than both k-means++ and k-medoids,
consistently across different values of k. Notably, the FJR approximation of GREEDYCAPTURE
empirically stays very close to 1 in all cases, in contrast to the higher worst-case bounds (Corollary 1).
Remarkably, the significant fairness advantage of GREEDYCAPTURE comes at a modest cost in
accuracy: all three objective values (average within-cluster distance, k-means, and k-medoids)
achieved by GREEDYCAPTURE are less than twice those of k-means++ and k-medoids, across all
values of k and all three datasets!

Lastly, our results are in contrast to the experiments of Chen et al. [1] for centroid clustering, where
GREEDYCAPTURE provides a worse core approximation than k-means++ on Iris and Diabetes
datasets; as demonstrated in Appendix D, this is not the case in non-centroid clustering.

6 Discussion

We have initiated the study of proportional fairness in non-centroid clustering. Throughout the paper,
we highlight several intriguing open questions. Probably the most important of these are whether
we can achieve a better approximation than O(n/k) of the core for the average loss, and whether
the core is always non-empty for the maximum loss. In an effort to answer the latter question,
in Appendix C.1 we show that the core is always non-empty for the maximum loss when the metric
space is 1-dimensional (i.e., a line). This contrasts with the average loss, for which the core remains
empty even on the line (see Appendix C.2).

In our work, we have shown that there are remarkable differences between centroid and non-centroid
clustering settings. One can consider a more general model, where the loss of an agent depends on
both her cluster center and the other agents in her cluster. Investigating what proportional fairness
guarantees can be achieved in this case is an exciting direction. Another intriguing question is whether
we can choose the number of clusters k intrinsically; this seems challenging as proportional fairness
guarantees seem to depend on fixing k in advance to define which coalitions can deviate. Lastly,
while classical algorithms such as k-means and k-centers are incompatible with the core and FJR
in the worst case (see Appendix E), it is interesting to explore conditions under which they may be
more compatible, and whether a fair clustering can be computed efficiently in such cases.
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Appendix

A Missing Proofs

A.1 Proof of Theorem 1

Proof. Consider an instance with a set of n = 4 agents {0, 1, 2, 3} and k = 2. Note that any group of
at least 2 agents deserves to form a cluster. For i ∈ {0, 1, 2}, the loss function of agent i is given by

ℓi(S) =


∞ if S = {0, 1, 2} or 3 ∈ S,

1 if |S| = 2 and i+ 1 mod 3 /∈ S,

0 if S = {i, i+ 1 mod 3}.

In words, agent i ∈ {0, 1, 2} only wants to be in a cluster of size 2 that does not include the
undesirable agent 3; any other cluster has infinite loss. In an ideal such cluster (loss 0), agent 0 prefers
to be with agent 1, agent 1 prefers to be with agent 2, and agent 2 prefers to be with agent 0. The
remaining clusters of size 2 have loss 1.

Consider any clustering C = (C1, C2). Without loss of generality, say 3 ∈ C1. We take three cases.

1. If |C1| = 1, then C2 = {0, 1, 2}. Then, a group S containing any two agents from C2 can
deviate, and each i ∈ S would improve from infinite loss to finite loss.

2. If |C1| ⩾ 3, then a group S containing two agents from C1 other than agent 3 can deviate,
and each i ∈ S would improve from infinite loss to finite loss.

3. Suppose |C1| = 2 and let C1 ∩ {0, 1, 2} = {i}. Then, the group S = {i, (i − 1) mod 4}
can deviate: agent i would improve from infinite loss to finite loss, and agent (i− 1) mod 4
would improve from a loss of 1 to a loss of 0.

In each case, every deviating agent improves by an infinite factor, yielding the desired result.

A.2 Proof of Theorem 2

Proof. Let us construct an instance with an even number k ⩾ 2 of clusters. Let ε = 1+
√
3

2 − α. We
set the number of agents to be a multiple of k such that n ⩾ k ·max

{
1
2ε + 1

2 , 4α
2
}

. Our construction
has k/2 + 1 areas, each consisting of a few locations (points), with several agents placed on each
of them. In particular, area 0 has a single location M0 with k/2 agents. For i = 1, 2, ..., k/2, area i
consists of location Mi hosting a single agent, a left location Li and a right location Ri each hosting
n/k − 1 agents. We use Li, Ri, and Mi to denote both the corresponding points as well as the set of
agents located in them. For i = 1, 2, ..., k/2, the distance between points Li and Ri is 1 while both
points are at distance n

2kα from point Mi. The distance between any two points in different areas is
infinite.

Consider a k-clustering C of the agents. We call bad any cluster of C that contains agents from
different areas; notice that all points in such a cluster have infinite cost. A good cluster has all its
points in the same area and, hence, all the agents contained in it have finite cost. Notice that C has at
most k − 1 good clusters that contain points from areas 1, 2, ..., k/2. Among these areas, let t be the
one with the minimum number of good clusters. Thus, area t either has all its agents in bad clusters
or contains one good cluster that includes some of its agents. If at least n/k of its agents belong to bad
clusters in C, a deviating coalition of them would improve their cost from infinite to finite. So, in
the following, we assume that clustering C contains exactly one good cluster with at least n/k agents
from area t.

We distinguish between three cases. The first one is when the good cluster does not contain the agent
in Mt. Among Rt and Lt, assume that Lt has at most as many agents in the good cluster as Rt (the
other subcase is symmetric). Then, the cost of all agents of Lt in the good cluster is at least 1/2.
The deviating coalition consisting of all agents in Lt and the agent of Mt (i.e., n/k agents in total)
improves the cost of all agents by a multiplicative factor at least α. Indeed, the cost of the agent in
Mt improves from infinite to finite while the cost of any agent in Lt improves from at least 1/2 to
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1
2α , since any such agent has distance n

2kα to the agent in Mt, and is colocated with the other agents
in the deviating coalition.

The second case is when the good cluster contains all agents in area t. In this case, the cost of the
agents in Lt and Rt is

n
2kα+n/k−1

2n/k−1 ⩾ 1
4α + 1

2 −
1

2(2n/k−1) ⩾ 1
4α + 1

2 −
ε
2 (the second inequality

follows by the definition of n). Then, each agent in the deviating coalition containing n
2k agents from

Lt and n
2k agents from Rt improves their cost to 1/2, i.e., by a factor of at least 1

2α + 1− ε.

The third case is when the good cluster contains the agent in Mt but does not contain some agent i
from Lt or Rt. We will assume that agent i belongs to Lt (the other subcase is symmetric). Notice
that the cost of the agents in Rt is at least

n
2kα

2n/k−2 ⩾ 1
4α . To see why, notice that the claim is trivial for

those agents of Rt that belong to bad clusters while each of the agents of Rt in the good cluster is at
distance n

2kα to the agent in Mt and there are at most 2n/k − 2 in the cluster. The deviating coalition
of all agents in Rt together with i decreases their cost to just k/n, i.e., by a factor of at least n

4kα ⩾ α
(the inequality follows by the definition of n), while the cost of agent i improves from infinite to
finite.

So, there is always a deviating coalition of at least n/k agents with each of them improving their cost
by a multiplicative factor of min

{
α, 1 + 1

2α − ε
}
= α, as desired. The last equality follows by the

definition of α and ε.

A.3 Proof of Theorem 3

Proof. Let C = {C1, . . . Ck} be the k-clustering returned by GREEDYCAPTURE. Let S ⊆ N be any
set of at least n/k agents such that their average loss satisfies

ℓi(C(i)) > (2 · ⌈n/k⌉ − 3) · ℓi(S), (1)

for every i ∈ S.

Let i∗ be the agent that was the first among the agents in S that was included in some cluster by the
algorithm. Consider the time step before this happens and let i′ ∈ C(i∗) be the agent that had the
minimum distance R from the ⌈n/k⌉-th agent in C(i∗) among all agents that had not been included to
clusters by the algorithm before. Then,

ℓi∗(C(i∗)) =
1

|C(i∗)|
∑

i∈C(i∗)

d(i∗, i)

⩽
1

|C(i∗)|

d(i∗, i′) +
∑

i∈C(i∗)\{i′,i∗}

(d(i∗, i′) + d(i′, i))


⩽

(
2− 3

⌈n/k⌉

)
·R. (2)

The first inequality follows by applying the triangle inequality. The second inequality follows since
C(i∗) has ⌈n/k⌉ agents and, thus, the RHS has 2⌈n/k⌉ − 3 terms representing distances of agents in
C(i∗) from agent i′, each bounded by R.

Now, recall that, at the time step the algorithm includes cluster C(i∗) in the clustering, none among
the (at least ⌈n/k⌉) agents of S have been included in any clusters. Then, S contains at most ⌈n/k⌉− 1
agents located at distance less than R from agent i∗; if this were not the case, the algorithm would
have included agent i∗ together with ⌈n/k⌉ − 1 other agents of S in a cluster instead of the agents in
C(i∗). Thus, S contains at least |S| − ⌈n/k⌉+ 1 agents at distance at least R from agent i∗. Thus,

ℓi∗(S) =
1

|S|
∑
i∈S

d(i∗, i) ⩾
|S| − ⌈n/k⌉+ 1

|S|
·R ⩾

1

⌈n/k⌉
·R. (3)

The second inequality follows since |S| ⩾ ⌈n/k⌉. Now, Equation (2) and Equation (3) yield
ℓi∗(C(i∗)) ⩽ (2 · ⌈n/k⌉ − 3) · ℓi∗(S), contradicting Equation (1).

Now, assume that there exists a set S ⊆ N of at least n/k agents such that their maximum loss satisfies

ℓi(C(i)) > 2 · ℓi(S), (4)
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Figure 2: The instance used to show the lower bounds in Theorem 3 and Lemma 1.

for every i ∈ S. Again, let i∗ be the agent that was the first among the agents in S that was included
in some cluster by the algorithm. Consider the time step before this happens and let i′ ∈ C(i∗) be the
agent that had the minimum distance R from the ⌈n/k⌉-th agent in C(i∗) among all agents that had
not been included to clusters by the algorithm before. Then, the maximum loss of agent i∗ for cluster
C(i∗) is

ℓi∗(C(i∗)) = max
i∈C(i∗)

d(i∗, i) ⩽ max
i∈C(i∗)

(d(i∗, i′) + d(i′, i)) ⩽ 2 ·R. (5)

The first inequality follows by applying the triangle inequality and the second one since all agents in
C(i∗) are at distance at most R from agent i′. We also have

ℓi∗(S) = max
i∈S

d(i∗, i) ⩾ R, (6)

otherwise, the algorithm would include a subset of ⌈n/k⌉ agents from set S in the clustering instead
of C(i∗). Together, Equation (5) and Equation (6) contradict Equation (4). This completes the proof
of the upper bounds.

The tightness of the analysis and the time complexity analysis are differed to Appendix A.3.

We now show that the analysis is tight for both the average and the maximum loss functions using
the instance depicted in Figure 2 with one agent at locations A, D, and E, two agents at location
B, n/2− 3 agents at location C, and n/2− 2 agents at location F . Suppose that k = 2. It is easy
to see that GREEDYCAPTURE returns a 2-clustering with the agents located at points A, B, and C
in one cluster and the agents located at points D, E, and F in another. Notice that the agents at
locations B and C have infinite loss under both loss functions, while the agent located at position
D has maximum loss 2(1− ε) and average loss (n−3)(1−ε)

n/2 . Now, consider the deviating coalition
of the n/2 agents at locations B, C, and D. The agents at B and C improve their loss from infinite
to finite, while the agent located at C improves her maximum loss to 1 + ε and her average loss to
2+(n/2−1)ε

n/2 , for multiplicative improvements approaching 2 and n/2− 3/2 as ε approaching 0.

Since GREEDYCAPTURE calls SMALLESTAGENTBALL at most k times and SMALLESTAGENTBALL
does at most n iterations in each call, we easily see that the time complexity of GREEDYCAPTURE is
O(kn).

A.4 Proof of Lemma 1

Proof. For some N ′ ⊆ N , let S be the most cohesive cluster and let S′ ̸= S be the cluster that
SMALLESTAGENTBALL returns. Suppose that S′ consists by the ⌈n/k⌉ closest agents in N ′ to some
agent i∗ and the distance of i∗ to her ⌈n/k⌉-th closest agent in N ′ is equal to R. From the triangle
inequality, we get that every two agents in S′ have distance at most 2R, and therefore, under both
loss functions, we get that maxi∈S′ℓi(S

′) ⩽ 2 ·R.

We show that there are two individuals in S, i1 and i2, such that the d(i1, i2) ⩾ R. Indeed if for each
i, i′ ∈ S, d(i, i′) < R, then i∗ would not be the agent in N ′ with the smallest distance to her ⌈n/k⌉-th
closest agent in N ′ and SMALLESTAGENTBALL would not return S. From this fact, we immediately
get a 2-approximation for the maximum loss, since maxi∈Sℓi(S) ⩾ R.

Now, for the average cost, note that

|S| · d(i1, i2) =
∑
i∈S

d(i1, i2) ⩽
∑
i∈S

(d(i1, i) + d(i, i2)) .

From this we get, that either
∑

i∈S d(i1, i) ⩾ |S| · d(i1, i2)/2 or
∑

i∈S d(i2, i) ⩾ |S| · d(i1, i2)/2.
Therefore, either ℓi1(S) ⩾ d(i1, i2)/2 ⩾ R/2 or ℓi2(S) ⩾ d(i1, i2)/2 ⩾ R/2. This means that
maxi∈Sℓi(S) ⩾ R/2 and the lemma follows.
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Next, we show that there are instances for which SMALLESTAGENTBALL achieves exactly these
bounds. Consider the instance showing in Figure 2, For k = 2, suppose there are = 1 point at position
A, n/4 points at position B, n/4− 1 at position C, 1 point at position D, 1 point at position E at
position D, and n/2− 2 points at position F . It is not hard to see that SMALLESTAGENTBALL will
return the cluster S = {D,E, F}. But S′ = {B,C,D} can reduce the average loss by a factor equal
to 4 and the maximum loss by a factor equal to 2 as n grows and ϵ goes to 0.

A.5 Algorithm AUDITFJR

ALGORITHM 3: AUDITFJR(A)
Input: Set of agents N , metric d, number of clusters k, clustering C
Output: Estimate θ of the FJR approximation of C
N ′ ← N ; θ ← 0; // Remaining agents, current FJR apx estimate
while |N ′| ⩾ n/k do

S ← A(N ′, d, n/k); // Find a cohesive group S

θ ← max{θ, mini∈S ℓi(C(i))
maxi∈S ℓi(S) }; // Update θ using the FJR violation due to S

i∗ ← argmini∈S ℓi(C(i));
N ′ ← N ′ \ {i∗}; // Remove the agent with the smallest current loss

end
return θ;

A.6 Proof of Theorem 5

Proof. SupposeA is a λ-approximation algorithm for the MOST COHESIVE CLUSTER problem. Con-
sider any clustering C on which AUDITFJR(A) returns θ. Let ρ = maxS⊆N :|S|⩾⌈n/k⌉

mini∈S ℓi(C(i))
maxi∈S ℓi(S)

be the exact FJR approximation of C. First, it is easy to check that ρ ⩾ θ because θ is computed by
taking the maximum of the same expression as ρ is, but over only some (instead of all possible) S.
Hence, it remains to prove that ρ ⩽ λ · θ.

Consider any group S ⊆ N with |S| ⩾ n/k. Let i∗ be the first agent in S that was removed by
AUDITFJR, say when A returned a group S′ containing it; there must be one such agent because
|S| ⩾ n/k and when AUDITFJR stops, fewer than n/k agents remain in N ′. Now, we have that

mini∈S ℓi(C(i))

maxi∈S ℓi(S)
⩽

ℓi∗(C(i∗))

maxi∈S ℓi(S)
⩽ λ · ℓi∗(C(i∗))

maxi∈S′ ℓi(S′)
= λ · mini∈S′ ℓi(C(i))

maxi∈S′ ℓi(S′)
⩽ λ · θ,

where the second inequality holds because A is a λ-approximation algorithm for the MOST
COHESIVE CLUSTER problem, which implies maxi∈S′ ℓi(S

′) ⩽ λ · maxi∈S ℓi(S); the next
equality holds because agent i∗ was selected for removal when S′ was returned, which implies
i∗ ∈ argmini∈S′ ℓi(C(i)); and the final inequality holds because θ is updated to be the maximum of
all FJR violations witnessed by the algorithm, and violation due to S′ is one of them.

Finally, using the approximation ratio bound of SMALLESTAGENTBALL for the MOST COHE-
SIVE CLUSTER problem from Lemma 1, we obtain the desired approximate auditing guarantee of
AUDITFJR(SMALLESTAGENTBALL).

A.7 Proof of Theorem 6

Proof. We show that such an algorithm can be used to solve the CLIQUE problem, which asks
whether a given undirected graph G = (V,E) admits a clique of size at least t. The problem remains
hard with t ⩾ 3, so we can assume this without loss of generality. Given (G, t), we first modify
G = (V,E) into G′ = (V ′, E′) as follows. To each v ∈ V , we attach t− 2 new (dummy) nodes, and
to one of those dummy nodes, we attach yet another dummy node. In total, for each v ∈ V , we are
adding t− 1 dummy nodes, so the final number of nodes is |V ′| = |V | · t.
Next, we create an instance of non-centroid clustering with n = |V ′| agents, one for each v ∈ V ′.
The distance d(u, v) is set as the length of the shortest path between u and v. Set k = |V |.
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Consider a clustering C in which each real node v ∈ V is put into a separate cluster, along with the
t − 1 dummy nodes created for it. Note that ℓv(C(v)) = 2 for each real node v ∈ V (due to the
dummy node attached to a dummy node attached to v) and ℓv(C(v)) ∈ {2, 3} for each dummy node
v ∈ V ′ \ V . Let us now consider possible deviating coalitions S.

If a dummy node v is included in S, then in order for an FJR violation, its maximum loss would have
to be strictly reduced. If ℓv(C(v)) = 2, then we must have ℓv(S) = 1, but no dummy node has at
least t ⩾ 3 nodes within a distance of 1. If ℓv(C(v)) = 3, then in order to find at least t nodes within
a distance of at most 2 (and the set not be identical to one of the clusters), S must include at least
one real node v′ that is not associated with the dummy node v. However, in this case, ℓv′(S) ⩾ 2
whereas ℓv′(C(v′)) = 2, so no FJR violation is possible.

The only remaining case is when S consists entirely of real nodes. Since ℓv(C(v)) = 2 for every real
node v ∈ V , an FJR violation exists if an only if maxv∈S ℓv(S) = 1, which happens if and only if S
is a clique of real nodes size at least t.

Thus, we have established that the FJR approximation of C is 2 if there exists a clique of size at
least t in G, and 1 otherwise. Since a λ-approximate auditing algorithm with λ < 2 can distinguish
between these two possibilities, it can be used to solve the CLIQUE problem.

B Bicriteria Approximation of the Core

Here, we consider a more general definition of the core.
Definition 5 ((α, δ)-Core). For α ⩾ 1, a k-clustering C = (C1, . . . , Ck) is said to be in the (α, δ)-
core if there is no group of agents S ⊆ N with |S| ⩾ δ · n/k such that α · ℓi(S) < ℓi(C(i)) for all
i ∈ S.
Theorem 7. GREEDYCAPTURE returns a clustering solution in the (δ, 2δ

δ−1 )-core, for any δ > 1.

Proof. Let C = {C1, . . . Ck} be a solution that GREEDYCAPTURE returns. Suppose for contradiction
that there exists S ⊆ N with |S| ⩾ δ · n/k such that

∀i ∈ S, ℓi(C(i)) >
2δ

δ − 1
· ℓi(S).

Let i∗ be the agent that was the first among the agents in S that was included in some cluster by the
algorithm. Consider the time step before this happens and let i′ ∈ C(i∗) be the agent that had the
minimum distance R from the ⌈n/k⌉-th agent in C(i∗) among all agents that had not been included to
clusters by the algorithm before. With similar arguments as in the proof of Theorem 3, we conclude
that

ℓi∗(C(i∗)) ⩽

(
2− 3

⌈n/k⌉

)
·R ⩽ 2 ·R.

Again, with very similar arguments as in the proof of Theorem 3, we can conclude that that S
contains at least |S| − ⌈n/k⌉+ 1 agents at distance at least R from agent i∗. Thus,

ℓi∗(S) =
1

|S|
∑
i∈S

d(i∗, i) ⩾
|S| − ⌈n/k⌉+ 1

|S|
·R ⩾

|S| − n/k

|S|
·R ⩾

δ − 1

δ
·R.

where the second inequality follows since |S| ⩾ δ · n/k and the theorem follows.

C Line

C.1 Non-Emptiness of the Core for Maximum Loss

Theorem 8. For the maximum loss in the line, GREEDYCOHESIVECLUSTERING
(SMALLESTDIAMETER) returns a solution in the core in O(kn) time complexity.

Proof. Let C = {C1, . . . , Ck} be the solution that the algorithm returns. Suppose for contradiction
that there exists a group S ⊆ N , with |S| ⩾ n/k such that ℓi(C(i)) > ℓi(S) for all i ∈ S. We denote
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ALGORITHM 4: SMALLESTDIAMETER

Input: N ′ ⊆ N , metric d, k, t
Output: S
if |N ′| < t then

S ← N ′;
else

Label the agents from 1 to n′, starting with the leftmost agent and moving to the right;
dmin ← d(1, n′);
i∗ ← 1;
for i = 1 to n′ − t do

if d(i, i+ t) < dmin then
dmin ← d(i, i+ t);
i∗ ← i;

end
end

end
S ← {i∗, . . . , i∗ + t};

the leftmost and rightmost agents in S by L and R, respectively. Let i∗ be the first agent in S that
was assigned to some cluster. If we denote with N ′ the set of agents that have not been disregarded
before this happens, this means that S ⊆ N ′. We denote the leftmost and rightmost agents in C(i∗)
by L∗ and R∗, respectively.

Note that i∗ has incentives to deviate if and only if either d(i∗, L) < d(i∗, L∗) or
d(i∗, R) < d(i∗, R∗), since otherwise ℓi∗(S) = max{d(i∗, L), d(i∗, R)} ⩾ ℓi∗(C(i∗)) =
max{d(i∗, L∗), d(i∗, R∗)}. Without loss of generality, assume that d(i∗, L) < d(i∗, L∗). Given
the way that the algorithm operates, it is not hard to see that since L∗ and i∗ are included in C(i∗)
and L is located between L∗ and i∗, then L is also included in C(i∗). Denote with R′ the ⌈n/k⌉-th
agent to the right of L in N ′. We notice that the algorithm returns C(i∗) instead of S, because
d(L∗, R∗) ⩽ d(L,R′) ⩽ d(L,R). But this means that

ℓL(C(iL)) = ℓL(C(i∗)) ⩽ d(L∗, R∗) ⩽ d(L,R) = ℓL(S)

and we reach in a contradiction.

Since GREEDYCOHESIVECLUSTERING calls SMALLESTDIAMETER at most k times and SMALL-
ESTDIAMETER does at most n iterations in each call, we easily see that the time complexity of
GREEDYCOHESIVECLUSTERING (SMALLESTDIAMETER) is O(kn).

C.2 Emptiness of the Core for Average Loss

Theorem 9. For k = 2 and the average loss, there exists an instance in the line where the core is
empty.

Proof. Consider the instance with even n > 24, where one agent, denoted by a, is located at position
0, n/2− 1 agents, denoted by the set S1, are located at position 2, n/2− 1 agents, denoted by the set
S2, are located at position 3 and the last agent denoted by b is located at position +∞.

Let C = (C1, C2) be any clustering solution. Without loss of generality, suppose that C1 contains b.
This means that all the agents that are part of C1 have loss equal to infinity. Note that if |C2| ⩽ n/2−1,
then |C1 ∩ (S1 ∪ S2 ∪ {a})| ⩾ n/2 + 1 which means that n/k agents from S1 ∪ S2 ∪ {a} could
reduce their loss arbitrary much by deviating to their own cluster. Hence, |C2| ⩾ n/2. Next, we
distinguish to two cases:

Case I: |C2 ∩ S2| ⩾ n/4. In this case, for each agent i in S1, we have that ℓi(C(i)) ⩾ n/4
n−1 ⩾ 1/4.

Moreover, note that a always prefers to be in a cluster that consists by agents in S1. Therefore, we
have that if a and S1 deviate to their own cluster, then for each i ∈ S1 ℓi(S1 ∪ {a}) = 1

n/2 < 1/4,
where the last inequality follows from the fact that n > 8.

Case II: |C2 ∩ S2| < n/4.
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Since |C2| ⩾ n/2, we have that |C2 ∩ S1| ⩾ n/4. In this case, for each agent i in S2, we have that
ℓi(C(i)) ⩾ n/4

n−1 ⩾ 1/4.

Now, we distinguish to two further subcases. First, suppose that a belongs to C1. Then, if the agents
in S2 and a deviate to their own cluster, we have that for each i ∈ S2, ℓi(S2 ∪ {a}) = 3

n/2 < 1/4,
where the last inequality follows from the fact that n > 24. If a is assigned to C2, then all the agents
in S1 have incentives to deviate with an agent from S2 that is assigned to C1.

D More Experimental Results

We conducted our experiments on a server with 32 cores / 64 threads at 4.2 GHz and 128 GB of
RAM.

(a) Core violation, average loss
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(b) FJR violation, average loss
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(c) Core violation, maximum loss
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(d) FJR violation, maximum loss
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(e) Average within-cluster distance
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(f) k-means objective
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(g) k-medoids objective
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Figure 3: Diabetes dataset
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(a) k-means objective
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(b) k-medoids objective
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Figure 4: Remaining figures for the Census Income Dataset

(a) Core violation, average loss
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(b) FJR violation, average loss
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(c) Core violation, maximum loss
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(d) FJR violation, maximum loss
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(e) Average within-cluster distance
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(f) k-means objective
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(g) k-medoids objective

5 10 15 20 25
k

0

25

50

75

100

125

k-
m

ed
oi

ds

Greedy Capture
k-means++
k-medoids

Figure 5: Iris dataset

E Incompatibility of FJR and Core with Classical Objectives

Consider Example 1 from Chen et al. [1]. Classic algorithms such as k-center, k-means++, and
k-median would cluster all points at positions a and b together. But if the points at a deviate by
forming a cluster, each of them improves from infinite loss to a finite loss. Therefore, these algorithms
do not provide a finite approximation to the core or FJR.
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