

## **CSCI 699**

## Evi Micha

CSCI 699 - Evi Micha

## Introduction

### People

> Instructor: Evi Micha (pmicha@usc.edu)

### Info

- Course Page: <u>https://evi-micha.github.io/Teaching/699/index.html</u>
- Discussion Board: <u>https://piazza.com/usc/fall2024/csci69930174</u>
- > Assignments and Recordings: <u>https://brightspace.usc.edu/d2l/home/154713</u>

### Meeting

- KAP 145, Fri 1-4.20 pm
- > Questions? Schedule 1-1 meeting by emailing me





## What?









Design decision-making algorithms that treat people fairly, use limited resources efficiently, and foster social good





# Logistics

## **Optional Reference Textbooks**

Handbook of Computational Social Choice

- By Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia
- Fairness and Machine Learning: Limitations and Opportunities
  - > By Solon Barocas Moritz Hardt and Arvind Narayanan
- Online versions available on the course web page

# **Grading Policy**

- 2 assignments: 40%
- Final project: 50%
- Class participation: 10%

## Assignments

- Theoretical
  - > They will require deriving intricate proofs
- We will assume...
  - Familiarity with abstract reasoning and proof techniques
  - Adequate familiarity of CS concepts (e.g., algorithm design, worstcase approximation, NP-hardness)
  - Adequate familiarity of math concepts (e.g., probability, statistics, linear algebra, calculus)
  - No prior background in economics

## Assignments

### Individual assignments

- > Free to discuss with classmates or read online material
- > Must write solutions in your own words
  - Easier if you do not take any pictures/notes from the discussions

### Citation

- For each question, you must cite the peer (write the name) or the online sources (provide links) referred, if any
- > Failing to do this is also plagiarism!

## **Other Policies**

- "No Garbage" Policy
  - Borrowed from: Prof. Allan Borodin & Prof. Nisarg Shah (citation!)
  - 1. Partial marks for viable approaches
  - 2. Zero marks if the answer makes no sense
  - 3. 20% marks if you admit to not knowing how to solve
- 20% > 0% !!

## **Course Timeline**

- (Approximate dates)
- $\approx$  Sep 27: HW1 posted
- $\approx$  Oct 18: HW1 due
- $\approx$  Oct 25: project proposal due (highly recommended to start earlier!)
- $\approx$  Nov 8: HW2 posted
- $\approx$  Nov 22: HW2 due
- $\approx$  Dec 6: Project presentations and project reports due

## **Course Project**

- How?
  - ➤ Groups of 1-3
    - Larger groups are better
    - $\circ$  Find partners early, but maybe after the enrollment stabilizes

### • What?

- Empirical: Quantitative analysis of algorithms presented in class (or your own) using simulations or real data
- Theoretical: Prove new observations about the algorithms or design new algorithms for a problem
- Ideal: A bit of both

# Project Topic

- From your own research area of interest
  - We'll introduce broad concepts that you may be able to apply to your own research area in order to find a project topic
  - > E.g., fairness, allocation efficiency, preference elicitation, ...

### • From the course

- > I'll mention some open problems as we go along
- > You can also study realistic variants of problems that we see in class

## **Course Project: Timeline**

- Find partners and think about a project idea
- Submission 1: Project proposal
  - Ideally 1 page but up to 2 pages excluding references
  - > Outline of the idea, prior work, reasonable goals
- Mid-project meetings
  - > Optional, 1-1 with me, 30-minute
- Class presentations
- Submission 2: Final project report
  - > Up to 5 pages excluding references and appendix
  - Focus on quality academic writing

# Introductions

## **Brief Introductions**

- What to say?
  - > Which program?
  - > Which year?
  - > Who are you working with (if any)?
  - > What is your area of interest (if any)?
  - > Anything else you'd like to share

# **Overview of the Course**



#### CSCI 699 - Evi Micha



### Q: How is the winner?

## **Example: Participatory Budgeting**

LOS ANGELES

.A.REPAIR

Participatory Budgeting

Join a Committee Submit a Proposal - Vote About - Stay in Touch Translate

311 City Services LA City Directory

### Tell us how to spend \$5.4 Million Cast your ballot March 15 - April 7

#### L.A. REPAIR Participatory Budgeting

The Los Angeles Reforms for Equity and Public Acknowledgment of Institutional Racism (L.A. REPAIR) is L.A.'s first participatory budget pilot program. L.A. REPAIR will distribute roughly \$8.5 million directly to nine L.A. City neighborhoods, called REPAIR Zones.

#### Vote March 15 - April 7

## Example: Human-AI Alignment



...AI alignment involves ensuring that an AI system's objectives match those of its designers... (wikipedia)

## Example: Human-AI Alignment



#### Fair Division **`**0` $\mathbf{\hat{o}}$ **2** =10 **2** =0 **2** =3 Ş =2 =12 Ş =20 I don't like I prefer I love strawberry strawberry chocolate **\_\_\_\_**=6 **\_\_\_\_**=7 **----**=15 =1

### **Q**: What is a fair allocation?

## Example: Citizens' Assemblies

Population







Panel



### **Q**: What is the optimal hospital location?

**Q**: If we decide to choose the optimal location, will the agents really tell us where they live?

Image Courtesy: Freepik

## Algorithmic Fairness

## Fairness in Clustering



**Q**: What is a fair clustering solution for any subset of data points?

## Fairness in RL



### **Exploration vs Exploitation**

## Fairness in RL



### **Q**: What is a fair policy?







Q: Is it possible to create a reviewing procedure that prevents any subcommunity from benefiting by withdrawing from a large conference?