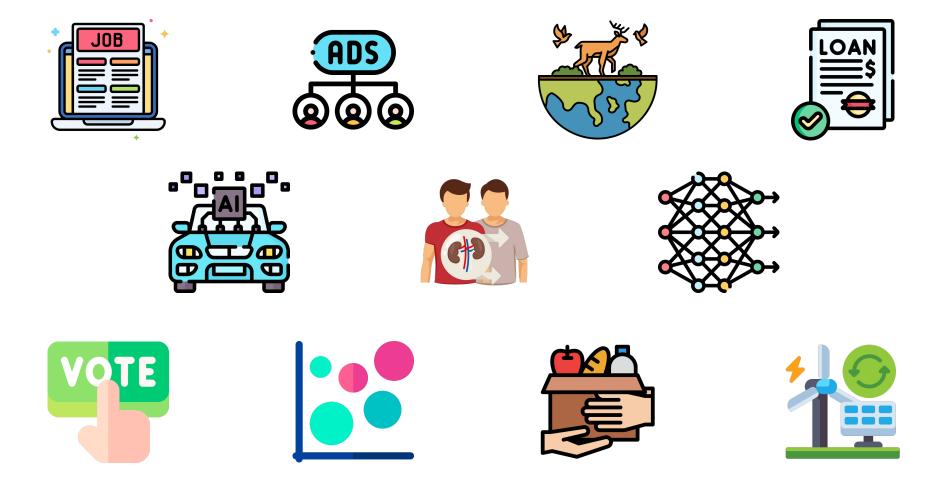


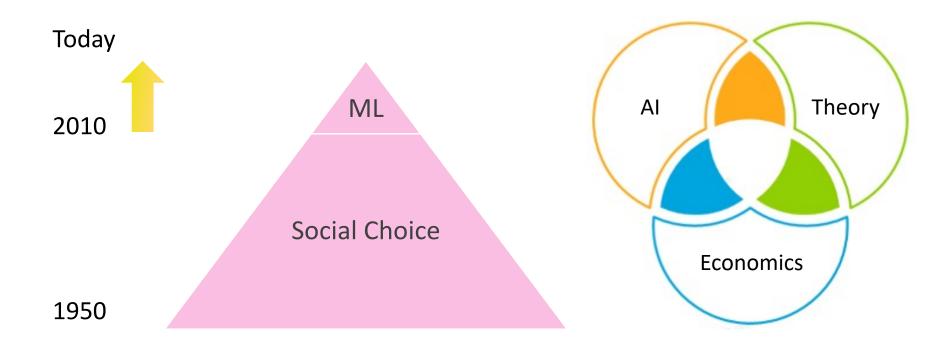
CSCI 699

Fairness in Ml and AI Evi Micha

Why fairness?



Fairness research



• Envy-freeness

> Classification, recommender systems, clustering

Nash social welfare

> Multi-armed bandits, rankings, classification

• Core

> Federated learning, clustering

Advantages

- Key advantages of social choice fairness criteria
- Broadly defined
 - > Often depend only on the definition of *who* the agents are and *what* their preferences are
 - > Applicable to any setting as long as you define these two pieces of information
- They respect the preferences of the agents to whom we wish to be fair
 - > As a consequence, they are often defined beyond just binary decisions
- Notions such as the core achieve group fairness to all possible groups
 - > No need to pre-specify the groups
 - > The strength of the guarantee scales automatically with the group size and cohesiveness, without having to subjectively choose free parameter values

Envy-Freeness in ML

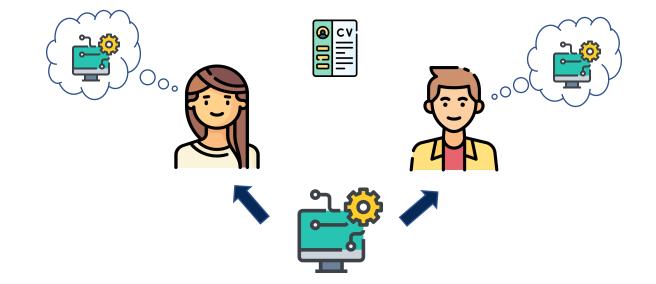
- Model
 - > Population of individuals given by a distribution D over X \circ Individual *i* represented using data point $x_i \in X$
 - > Classifier $f: X \rightarrow Y$ maps every individual to a classification outcome
- Types of classification outcomes
 - > Hard binary classification: $Y = \{0,1\}$
 - > Hard multiclass classification: |Y| = p > 2
 - ➤ Soft binary classification: Y = [0,1]
 - \succ Soft multiclass classification: $Y \in \mathbb{R}^p$, p > 2

- Objective of the principal: minimize the loss $\mathbb{E}_{x \sim D} [\ell(x, f(x))]$
 - > If f(x) is a distribution, $\ell(x, f(x)) = \mathbb{E}_{y \sim f(x)}[\ell(x, y)]$
- Utility function $u: X \times Y \to \mathbb{R}_{\geq 0}$ > Utility to individual *i* is $u(x_i, f(x_i))$
- Fairness is often modeled as a constraint that uses the utility function \boldsymbol{u}

Individual Fairness

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]

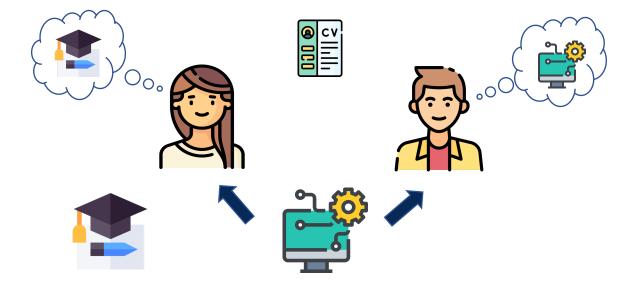
"Similar individuals should be treated similarly" Classifier f is individual fair if: $\forall x, y \in N, \quad D(f(x), f(y)) \leq d(x, y)$ D(p,q) measures some distance between two allocations p, q



Individual Fairness

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]

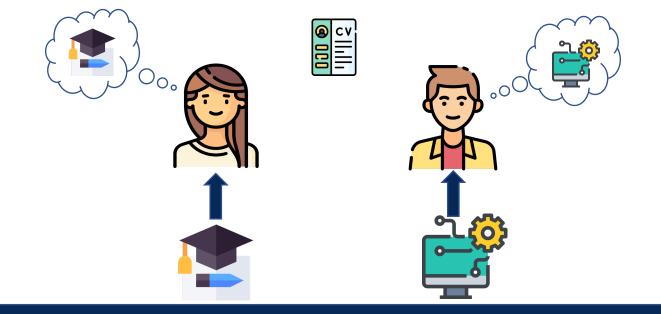
"Similar individuals should be treated similarly" Classifier f is individual fair if: $\forall x, y \in N, \quad D(f(x), f(y)) \leq d(x, y)$ D(p,q) measures some distance between two allocations p, q



[Balcan, Dick, Noothigattu, Procaccia, 2019]

"Equal individuals shouldn't envy each other"

Classifier f is envy-free if: $\forall x, y \in N, \ u_x(f(x)) \ge u_x(f(y))$

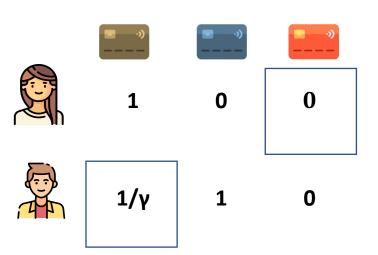


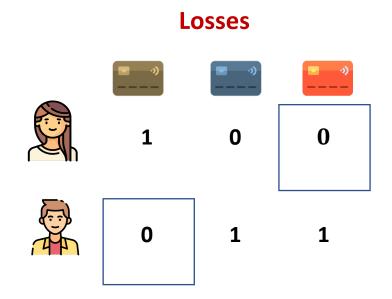
[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Space *X* of individuals
- Space *Y* of outcomes
- Utility function $u: X \times Y \rightarrow [0,1]$
- **Goal:** Find a classifier h: $X \rightarrow Y$ that is envy free and subject to that minimizes the loss
- Does the optimal deterministic classifier incur a loss that is very close to that of the optimal randomized classifier?

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Observation: Envy-freeness is too strong for deterministic classifiers
 - > Loss of optimal deterministic EF classifier \geq 1

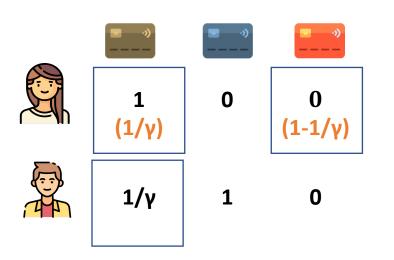


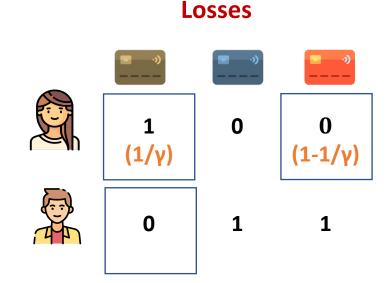


Utilities

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Observation: Envy-freeness is too strong for deterministic classifiers
 - > Loss of optimal randomized EF classifier $\leq 1/\gamma$





Utilities

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Space *X* of individuals
- Space *Y* of outcomes
- Utility function $u: X \times Y \rightarrow [0,1]$
- A classifier h: $X \to \Delta(Y)$ is (α, β) -EF if
 - $> \Pr_{x,x' \sim P} \left(u \left(x, h(x) \right) < u \left(x, h(x') \right) \beta \right) \le \alpha$
 - → where $u(x, h(X)) = E_{y \sim h(x)}u(x, y)$
- Learning problem:
 - > Access to an unknown distribution P over X and their utility functions
 - > Find a (α, β) -EF that minimizes expected loss $E_{x \sim P}[\ell(x, h(x))]$

 $\circ \ell(x,h(x)) = E_{y \sim h(x)}\ell(x,y)$

Theorem (informal): Exponential many samples are needed for generalizing

Preference-Informed IF

[Kim, Korolova, Rothblum, Yona, 2019]

"Similar individuals should be treated similarly" Classifier f is individual fair if: $\forall x, x' \in N, D(f(x), f(x')) \leq d(x, x')$ "Equal individuals shouldn't envy each other"

Classifier f is envy-free if: $\forall x, x' \in N, \ u_x(f(x)) \ge u_x(f(x'))$

"Similar individuals shouldn't envy each other too much"

Classifier f is PIIF if: $\forall x, x' \in N, \exists z \in Y, D(z, f(y)) \le d(x, y) \land u_x(f(x)) \ge u_x(z)$

- PIIF requires that either f(x) satisfies individual fairness with respect to f(y) or x prefers their allocation over some alternative allocation that would have satisfied individual fairness with respect to f(y)
- Theorem (informal): Any policy that is either IF or EF is also PIIF

Metric EF

[Kim, Korolova, Rothblum, Yona, 2019]

"<u>Similar</u> individuals shouldn't envy each other <u>too much</u>"

Classifier f satisfies metric α –EF if: $\forall x, x' \in N, \ u_x(f(x)) \ge u_x(f(x')) - \alpha \cdot d(x, x')$

- A utility function u is ℓ Lipschit with respect to D: $\Delta(Y) \times \Delta(Y) \rightarrow \mathbb{R}_+$ if $u(f(x), f(x')) \leq \ell \cdot D(f(x), f(x'))$
- Theorem: If u is ℓ Lipschit, then a PIIF classifier f satisfies metric ℓ EF
- Proof:
- Suppose that a policy *f* satisfies PIIF
- Then, there exists $z \in Y$ such that

$$u_x(f(x)) \ge u_x(z)$$

$$\ge u_x(f(y)) - (u_x(f(y)) - u_x(z))$$

$$\ge u_x(f(y)) - \ell \cdot D(f(y), z)$$

$$\ge u_x(f(y)) - \ell \cdot d(y, x)$$

(Since f satisfies PIIF)

(from Lipschitness) (Since *f* satisfies PIIF)

Envy-Freeness ⇒ Recommendations

CSCI 699 - Evi Micha

Envy-Freeness \Rightarrow Recommendations

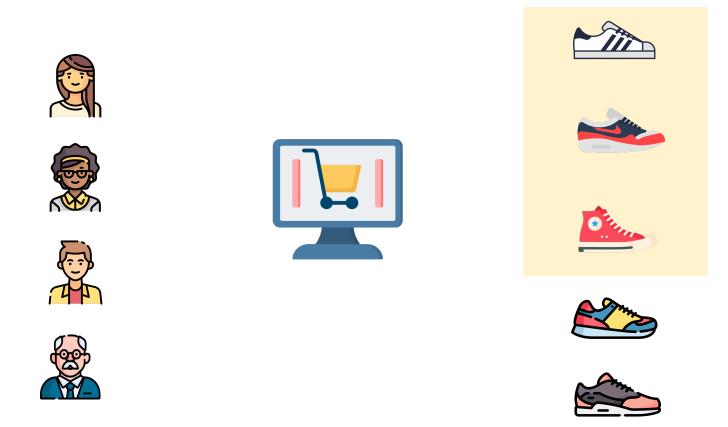
[Do, Corbett-Davies, Atif, Usunier, 2023]

- Model
 - > Individuals represented by data points in set X
 - > A set items Y
 - > A set of contexts C
- Recommendation policy π

> $\pi_x(y|c)$ = probability of recommending item y to user x given a context c

- Utility function: $u_x(\pi_x) = \mathbb{E}_{c \sim C_m, y \sim \pi_x(\cdot|c)}[v_x(y|c)]$
- Envy-freeness: $\forall x, x' \in X, \ u_x(\pi_x) \ge u_x(\pi_{x'}) \varepsilon$

Envy-Freeness \Rightarrow Recommendations



[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

- Many-to-many matching
 - Each user is recommended k products
 - Each product may be recommended to a different number of users
- Relevance of products to users given by $V: X \times Y \to \mathbb{R}$
- Recommendation policy π
 - ▶ Each user x is recommended $\pi_x \subseteq Y$ with $|\pi_x| = k$
 - > Let π_x^* be the top-k products for user x by relevance
- Utilities
 - > Utility to user x given by $u_{\chi}(\pi_{\chi}) = \frac{\sum_{y \in \pi_{\chi}} V(x,y)}{\sum_{y \in \pi_{\chi}^*} V(x,y)}$
 - > Utility to product y given by $E_y(\pi)$, the number of users y is exposed to

[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

- Two-sided fairness
 - Fairness for users: envy-freeness up to one (EF1)

 $\forall x, x' \in X, \exists y \in \pi_{x'}: u_x(\pi_x) \ge u_x(\pi_{x'} \setminus \{y\})$

> Fairness for products: minimum exposure \overline{E}

 $\forall y \in Y, E_y(\pi) \geq \overline{E}$

- Theorem: There exists an efficient algorithm that achieves EF1 among all users and the minimum exposure guarantee among at least m-k products
 - The algorithm executes two variations round robin. At the first execution, it ensures EF1 for users and minimum exposure of all products. At the second execution, it ensures that k products are recommended to each use
- Future directions: Fairness to products in terms of the relevance, asymmetric entitlements of users

[Freeman, M, Shah, 2021]

- Many-to-many matching
 - Each user is recommended k products
 - Each product is recommended to k users
- Relevance of products to users given by $V: X \times Y \to \mathbb{R}$
- Recommendation policy π
 - ▶ Each user x is recommended $\pi_x \subseteq Y$ with $|\pi_x| = k$
 - ▶ Each product *y* is recommended to $\pi_y \subseteq X$ with $|\pi_y| = k$
- Utilities
 - > Utility to user x given by $u_x(\pi_x) = \sum_{y \in \pi_x} V(x, y)$
 - > Utility to product y given by $u_y(\pi_y) = \sum_{x \in \pi_y} V(x, y)$

[Freeman, M, Shah, 2021]

Two-sided fairness

Fairness for users: envy-freeness up to one (EF1)

 $\forall x, x' \in X, \exists y \in \pi_{x'}: u_x(\pi_x) \ge u_x(\pi_{x'} \setminus \{y\})$

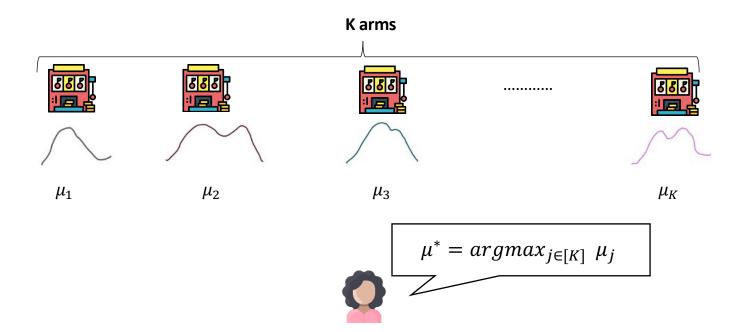
Fairness for products: envy-freeness up to one (EF1)

 $\forall \mathbf{y}, \mathbf{y}' \in \mathbf{Y}, \exists x \in \pi_y: u_{\mathbf{y}}(\pi_{\mathbf{y}}) \ge u_{\mathbf{y}}(\pi_{y'} \setminus \{x\})$

- Theorem: When each side agrees on the ranking of the other side by relevance, a policy that is EF1 w.r.t. both users and products exists and can be computed efficiently
 - Round robin by determining the order carefully
- Open question: Does a policy that is EF1 w.r.t. both sides always exist?
- Future directions: Non-stationary recommendations, different entitlements

Nash Social Welfare in ML

Multi-Armed Bandits

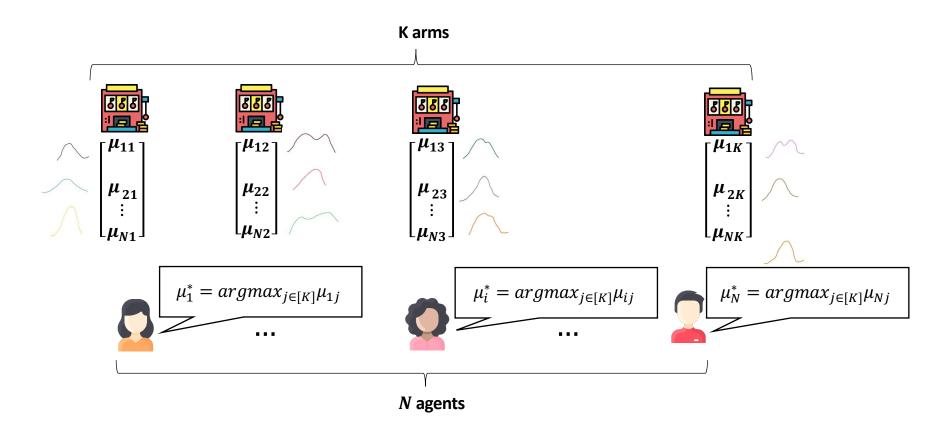


Exploration vs Exploitation

Regret: $R_T = T\mu^* - \sum_{t=1}^T \mu(t)$

Multi-Agent Multi-Armed Bandits

[Hossain, M, Shah, 2021]



What is a fair policy?

Multi-Agent Multi-Armed Bandits

[Hossain, M, Shah, 2021]

Distribution $p = [p_1, ..., p_K]$ gives expected reward $\sum_{i=1}^{K} p_i \cdot \mu_{ii}$ to agent ia

 $p_1^a =$

Maximizing welfare functions ٠

a) Utilitarian welfare
$$\sum_{i=1}^{N} \sum_{j=1}^{K} p_j \cdot \mu_{ij}$$

- b) Egalitarian welfare $\min_{i \in N} \sum_{j=1}^{K} p_j \cdot \mu_{ij}$ $p_1^b =$
- c) Nash welfare $\prod_{i=1}^{N} \sum_{j=1}^{K} p_j \cdot \mu_{ij}$

$$p_{1}^{a} = 1$$

$$p_{1}^{b} = \frac{1}{2}$$

$$p_{1}^{b} = \frac{1}{2}$$

$$p_{1}^{b} = \frac{1}{2}$$

$$p_{1}^{c} = \frac{2}{3}$$

$$p_{1}^{c} = \frac{1}{3}$$

• Regret: $R_T = NSW(p^*, \mu) - \sum_{t=1}^T NSW(p(t), \mu)$

0

1/2

Explore First

[Hossain, M, Shah, 2021]

Exploration

- Pull each arm L times
- Calculate $\hat{\mu}_{ij} = \sum_{t=1}^{L} \frac{X_{ij}^t}{L}$

Exploitation

• $\hat{p} = argmax_p NSW(p, \hat{\mu})$

- When $L = \widetilde{\Theta}(N^{2/3}K^{-2/3}T^{2/3})$, then $E[R_T] = \widetilde{O}(N^{2/3}K^{1/3}T^{2/3})$
- When $L = \widetilde{\Theta}(N^{1/3}K^{-1/3}T^{2/3})$, then $E[R_T] = \widetilde{O}(N^{1/3}K^{2/3}T^{2/3})$

ϵ-Greedy

[Hossain, M, Shah, 2021]

For t=1, 2... do

 \circ Toss a coin with success probability ε^t

If success do

Exploration

- pull arm j
- $j \leftarrow j + 1 \mod n$

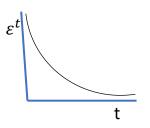
Else do

Exploitation

• Calculate
$$\hat{\mu}_{ij}^t = \sum_{s=1}^t \frac{X_{ij}^s}{n_{ij}^t}$$

•
$$p^t = argmax_p NSW(p, \hat{\mu}^t)$$

- When $\varepsilon^t = \widetilde{\Theta}(N^{2/3}K^{1/3}t^{-1/3})$, then $E[R_T] = \widetilde{O}(N^{2/3}K^{1/3}T^{2/3})$
- When $\varepsilon^t = \widetilde{\Theta}(N^{1/3}K^{2/3}t^{-1/3})$, then $E[R_T] = \widetilde{O}(N^{1/3}K^{2/3}T^{2/3})$



Upper Confidence Bound (UCb)

[Hossain, M, Shah, 2021]

For t=1, 2... do

• Calculate
$$\hat{\mu}_{ij}^t = \sum_{s=1}^t \frac{X_{ij}^s}{n_{ij}^t}$$

$$\circ Calculate UCB(p) = NSW(p, \hat{\mu}^t) + \alpha^t \cdot \sum_{j=1}^{K} p_j \cdot \sqrt{\frac{\log(NKt)}{n_{ij}^t}}$$

$$\circ p^t = argmax_p UCB(p)$$

- When $\alpha^t = N$, then $E[R_T] = \widetilde{O}(NKT^{1/2})$
- When $\alpha^t = \widetilde{\Theta}(N^{1/2}K^{1/2})$, then $E[R_T] = \widetilde{O}(N^{1/2}K^{3/2}T^{1/2})$

Upper Confidence Bound (UCb)

[Jones, Nguyen, Nguyen, 2023]

For t=1, 2... do

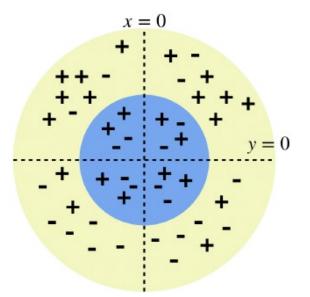
• Calculate
$$\hat{\mu}_{ij}^t = \sum_{s=1}^t \frac{X_{ij}^s}{n_{ij}^t} + \sqrt{\frac{\log(NKt)}{n_{ij}^t}}$$

$$\circ p^{t} = argmax_{p} NSW(p, \hat{\mu}^{t})$$

•
$$E[R_T] = \widetilde{O}(N^{1/2}K^{1/2}T^{1/2} + NK)$$

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

• Standard Notion of Fairness: Statistical Parity or Equalized odds



Can every group of individuals be treated at least as well as it can be classified in itself?

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

- Utility of an individual: $u_i(f) = \mathbb{I}[f(x_i) = y_i]$
- Utility of a group: $u_S(f) = \frac{1}{|S|} \sum_{i \in S} u_i(f)$
- Optimal Classifier for a group: $f_S^* = argmax_{f \in F}u_S(f)$
- Best-effort Guarantees
 - Return f such that $u_S(f) \ge \alpha \cdot u_S(f_S^*)$, with $\alpha \le 1$, for each $S \subseteq N$
- **Observation:** No imperfect classifier *f* provides any reasonable guarantee to best-effort
 - Let $S = \{i \in N : f(x_i) \neq y_i\}$ and $u_s(f_s^*) = 1$
- Randomized Classifiers: Let D_f be a distribution over F
 - $u_i(D_f) = \mathbb{E}_{f \sim D_f}[u_i(f)]$
 - $u_S(D_f) = \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{f \sim D_f}[u_i(f)]$

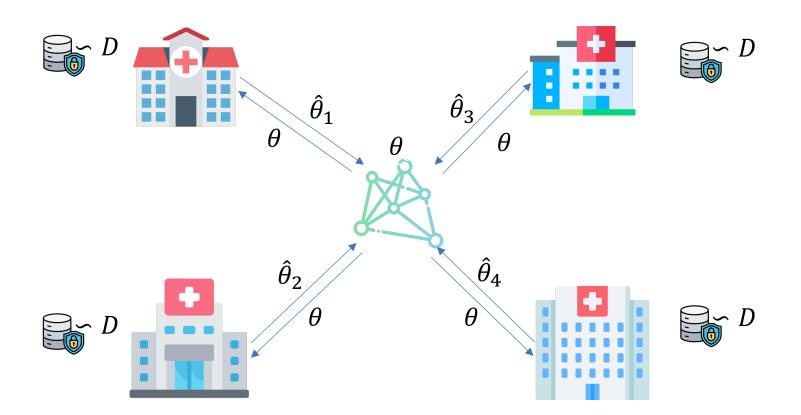
[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

• **Theorem:** There is an instance in which there is no distribution D_f over classifiers

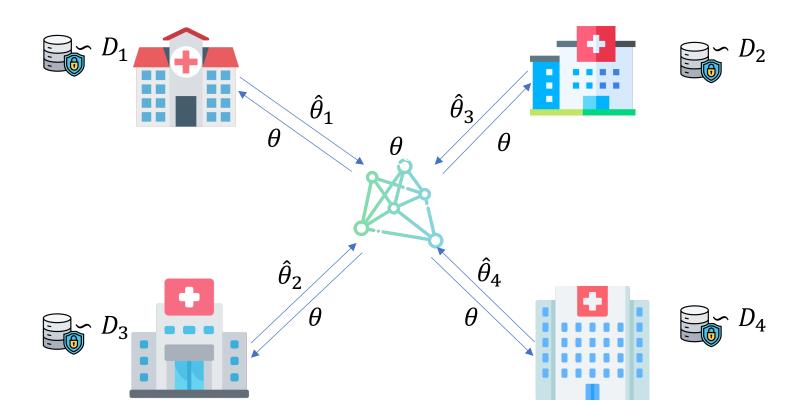
such that for all $S \subseteq N$ with $u_s(f_S^*) = 1$, $u_s(D_f) > \frac{|S|}{|N|}$

- $D_f^{NSW} = argmax_{D_f \in \Delta(F)} \prod_{i \in N} u_i(D_f)$
- Theorem:
 - 1. For every group $S \subseteq N$ that admits a perfect classifier, $u_S(D_f^{NSW}) \ge \frac{|S|}{|N|}$
 - 2. For every group $S \subseteq N$, $u_S(D_f^{NSW}) \ge \frac{|S|}{|N|} [u_S(f_S^*)]^2$

Core in ML



• Goal: Choose $f_{\theta} \colon \mathbb{R}^d \to \mathbb{R}$ from $F = \{f_{\theta} \colon \theta \in P \subseteq \mathbb{R}^d\}$



• Goal: Choose f_{θ} : $\mathbb{R}^d \to \mathbb{R}$ from $F = \{f_{\theta} : \theta \in P \subseteq \mathbb{R}^d\}$

[Chaudhury, Li, Kang, Li, Mehta, 2022]

- Utility of each agent:
 - $u_i(\theta) = M \mathbb{E}_{(x,y) \sim D_i} \left[\ell_i(f_{\theta}(x), y) \right]$
- **Goal:** Choose θ that is fair for all agents
- **Core:** A parameter vector $\theta \in P$ is in the core if for all $\theta' \in P$ and $S \subseteq N$, it holds

 $u_i(\theta) \ge \frac{|S|}{|N|} u_i(\theta')$ for all $i \in S$, with at lost one strict inequality

- Pareto Optimality: A parameter vector θ ∈ P is Pareto Optimal if there exists no θ' ∈ P such that u_i(θ') ≥ u_i(θ) for all i ∈ N, with at lost one strict inequality
- **Proportionality:** A parameter vector $\theta \in P$ is proportionally fair if for all $\theta' \in P$, it holds

$$u_i(\theta) \ge \frac{u_i(\theta')}{|N|}$$
 for all $i \in N$

[Chaudhury, Li, Kang, Li, Mehta, 2022]

- Theorem: When the agents' utilities are continuous and the set of maximizers of any conical combination of the agents' utilities is convex, a parameter vector θ ∈ P in the core always exists
- **Theorem:** When the agents' utilities are concave, then the parameter vector $\theta \in P$ that maximizes the NSW is in the core

maximize $\prod_{i \in N} u_i(\theta)$ maximize $\sum_{i \in N} \log(u_i(\theta))$

subject to $\theta \in P$

subject to $\theta \in P$

Core in Al

Peer Review Model

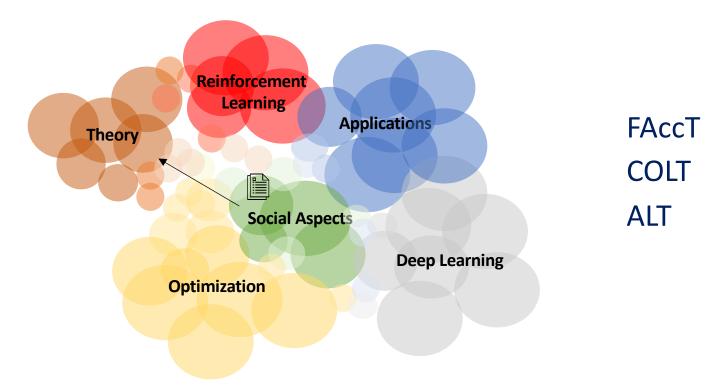
[Aziz, M, Shah, 2023]

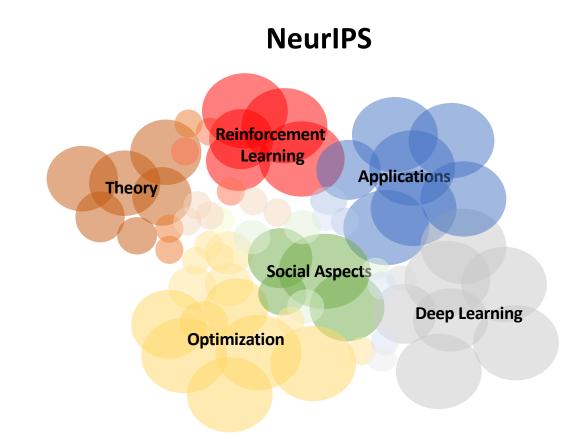
- A set N = [n] of authors that serve as reviewers
- Each author *i* submits a set of papers *P_i*

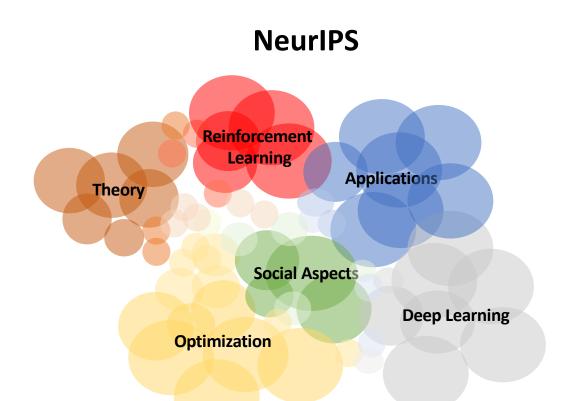
An assignment of $\bigcup_{i \in N} P_i$ over N is *valid* if:

- No agent is assigned to review her own papers
- Each paper is assigned to k_p reviewers
- Each reviewer is assigned to review up to k_a papers

NeurIPS

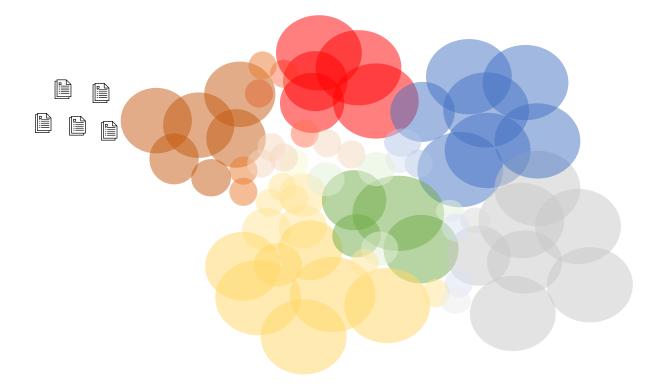






Is it possible to create a reviewing procedure that prevents any subcommunity from benefiting by withdrawing from a large conference?

Core as A Notion of Fairness



Peer Review Model

[Aziz, M, Shah, 2023]

An assignment *R* is in the core if there is no $N' \subseteq N$, $P'_i \subseteq P_i$ for $i \in N'$ and a valid assignment *R*' of $\bigcup_{i \in N'} P'_i$ over *N'* such that $\forall i \in N', R' >_i R$

Theorem: There exists an efficient algorithm, called *CoBRA*, that finds an assignment in the core.

Experiments with Rea Data

- TPMS (Toronto Paper Matching System)
- PR4A (Peer Review for All)

Dataset	Algo	USW	ESW	α-Core		CV-Pr
				#unb- $lpha$	$lpha^*$	
CVPR 2017	CoBRA	1.225 <u>+</u> 0.021	0.000 <u>±</u> 0.000	0%	1.00+0.00	0%
	TPMS	1.497 <u>±</u> 0.019	0.000 <u>±</u> 0.000	89%	3.134 <u>+</u> 0.306	100%
	PR4A	1.416 <u>+</u> 0.019	0.120 <u>+</u> 0.032	51%	1.700 <u>+</u> 0.078	100%
CVPR 2018	CoBRA	0.224 <u>+</u> 0.004	0.004±0.001	0%	1.000±0.000	0%
	TPMS	0.286 <u>+</u> 0.005	0.043±0.004	0%	1.271 <u>+</u> 0.038	100%
	PR4A	0.282 <u>+</u> 0.005	0.099±0.001	0%	1.139 <u>+</u> 0.011	100%
ICLR 2018	CoBRA	0.166 ± 0.001	0.028±0.001	0%	1.000±0.000	0%
	TPMS	0.184±0.001	0.048±0.002	0%	1.048±0.008	90%
	PR4A	0.179 <u>+</u> 0.001	0.082±0.001	0%	1.087±0.009	100%