

CSCI 699

Evi Micha Fairness in Ml and AI

CSCI 699 - Evi Micha 1

Why fairness?

Fairness research

• Envy-freeness

^Ø Classification, recommender systems, clustering

• Nash social welfare

 \triangleright Multi-armed bandits, rankings, classification

• Core

 \triangleright Federated learning, clustering

Advantages

- Key advantages of social choice fairness criteria
- Broadly defined
	- ^Ø Often depend only on the definition of *who* the agents are and *what* their preferences are
	- \geq Applicable to any setting as long as you define these two pieces of information
- They respect the preferences of the agents to whom we wish to be fair
	- \geq As a consequence, they are often defined beyond just binary decisions
- Notions such as the core achieve group fairness to all possible groups
	- \triangleright No need to pre-specify the groups
	- \triangleright The strength of the guarantee scales automatically with the group size and cohesiveness, without having to subjectively choose free parameter values

Envy-Freeness in ML

- Model
	- \triangleright Population of individuals given by a distribution D over X ○ Individual i represented using data point $x_i \in X$
	- \triangleright Classifier $f: X \to Y$ maps every individual to a classification outcome
- Types of classification outcomes
	- \triangleright Hard binary classification: $Y = \{0,1\}$
	- \triangleright Hard multiclass classification: $|Y| = p > 2$
	- \triangleright Soft binary classification: $Y = [0,1]$
	- > Soft multiclass classification: $Y \in \mathbb{R}^p$, $p > 2$

- Objective of the principal: minimize the loss $\mathbb{E}_{x \sim D} [\ell(x, f(x))]$
	- \triangleright If $f(x)$ is a distribution, $\ell(x, f(x)) = \mathbb{E}_{y \sim f(x)}[\ell(x, y)]$
- Utility function $u: X \times Y \to \mathbb{R}_{\geq 0}$ \triangleright Utility to individual *i* is $u(x_i, f(x_i))$
- Fairness is often modeled as a constraint that uses the utility function u

Individual Fairness

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]

*"***Similar individuals should be treated similarly***" Classifier f is individual fair if:* $\forall x, y \in N,$ $D(f(x), f(y)) \leq d(x, y)$ $D(p, q)$ measures some distance between two allocations p, q

Individual Fairness

[Dwork, Hardt, Pitassi, Reingold, Zemel, 2012]

*"***Similar individuals should be treated similarly***" Classifier f is individual fair if:* $\forall x, y \in N,$ $D(f(x), f(y)) \leq d(x, y)$ $D(p, q)$ measures some distance between two allocations p, q

[Balcan, Dick, Noothigattu, Procaccia, 2019]

*"***Equal individuals shouldn't envy each other***"*

Classifier f is envy-free if: $\forall x, y \in N$, $u_x(f(x)) \ge u_x(f(y))$

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Space X of individuals
- Space Y of outcomes
- Utility function $u: X \times Y \rightarrow [0,1]$
- **Goal:** Find a classifier h: $X \rightarrow Y$ that is envy free and subject to that minimizes the loss
- Does the optimal deterministic classifier incur a loss that is very close to that of the optimal randomized classifier?

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Observation: Envy-freeness is too strong for deterministic classifiers
	- **► Loss of optimal deterministic EF classifier** ≥ 1

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Observation: Envy-freeness is too strong for deterministic classifiers
	- \triangleright Loss of optimal randomized EF classifier $\leq {}^{1}/_{\gamma}$

Utilities Losses

[Balcan, Dick, Noothigattu, Procaccia, 2019]

- Space X of individuals
- Space Y of outcomes
- Utility function $u: X \times Y \rightarrow [0,1]$
- A classifier h: $X \to \Delta(Y)$ is (α, β) -EF if
	- \triangleright Pr $x, x \rightarrow P$ $u(x, h(x)) < u(x, h(x')) - \beta \leq \alpha$
	- \triangleright where $u(x, h(X)) = E_{\gamma \sim h(x)} u(x, y)$
- Learning problem:
	- \triangleright Access to an unknown distribution P over X and their utility functions
	- \triangleright Find a (α, β) -EF that minimizes expected loss $E_{x\sim P}[\ell(x, h(x))]$

 ∂ $\ell(x, h(x)) = E_{\nu \sim h(x)} \ell(x, y)$

• Theorem (informal): Exponential many samples are needed for generalizing

Preference-Informed IF

[Kim, Korolova, Rothblum, Yona, 2019]

*"***Similar individuals should be treated similarly***" Classifier f is individual fair if:* $\forall x, x' \in N, D(f(x), f(x')) \leq d(x, x')$

*"***Equal individuals shouldn't envy each other***"*

Classifier f is envy-free if: $\forall x, x' \in N$, $u_x(f(x)) \ge u_x(f(x'))$

*"***Similar individuals shouldn't envy each other too much***"*

Classifier f is PIIF if: $\forall x, x' \in N$, $\exists z \in Y$, $D(z, f(y)) \leq d(x, y) \wedge u_x(f(x)) \geq u_x(z)$

- PIIF requires that either $f(x)$ satisfies individual fairness with respect to $f(y)$ or x prefers their allocation over some alternative allocation that would have satisfied individual fairness with respect to $f(y)$
- Theorem (informal): Any policy that is either IF or EF is also PIIF

Metric EF

[Kim, Korolova, Rothblum, Yona, 2019]

*"***Similar individuals shouldn't envy each other too much***"*

Classifier f satisfies metric α –*EF if:* $\forall x, x' \in N$, $u_x(f(x)) \ge u_x(f(x')) - \alpha \cdot d(x, x')$

- A utility function u is ℓ $-$ Lipschit with respect to D: Δ (Y) \times Δ (Y) \rightarrow \mathbb{R}_+ if $u(f(x), f(x')) \leq \ell \cdot D(f(x), f(x'))$
- Theorem: If u is ℓ Lipschit, then a PIIF classifier f satisfies *metric* ℓ –*EF*
- Proof:
- Suppose that a policy f satisfies PIIF
- Then, there exists $z \in Y$ such that

$$
u_x(f(x)) \ge u_x(z)
$$

\n
$$
\ge u_x(f(y)) - (u_x(f(y)) - u_x(z))
$$

\n
$$
\ge u_x(f(y)) - e \cdot D(f(y), z)
$$

\n
$$
\ge u_x(f(y)) - e \cdot d(y, x)
$$

(Since f satisfies PIIF)

(from Lipschitness) (Since f satisfies PIIF)

$Envy\text{-}Freeness \Rightarrow$ Recommendations

$Envy\text{-}Freeness \Rightarrow Recommendations$

[Do, Corbett-Davies, Atif, Usunier, 2023]

- Model
	- \triangleright Individuals represented by data points in set X
	- \triangleright A set items Y
	- \triangleright A set of contexts C
- Recommendation policy π

 $\triangleright \pi_x(y|c)$ = probability of recommending item y to user x given a context c

- Utility function: $u_x(\pi_x) = \mathbb{E}_{c \sim C_m, v \sim \pi_x(\cdot|c)}[v_x(y|c)]$
- Envy-freeness: $\forall x, x' \in X$, $u_x(\pi_x) \ge u_x(\pi_{x'}) \varepsilon$

$Envy\text{-}Freeness \Rightarrow Recommendations$

[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

- Many-to-many matching
	- \triangleright Each user is recommended k products
	- \triangleright Each product may be recommended to a different number of users
- Relevance of products to users given by $V: X \times Y \to \mathbb{R}$
- Recommendation policy π
	- \triangleright Each user *x* is recommended $\pi_x \subseteq Y$ with $|\pi_x| = k$
	- \triangleright Let π^*_x be the top-k products for user x by relevance
- Utilities
	- \triangleright Utility to user x given by $u_x(\pi_x) =$ $\sum_{y \in \pi_X} V(x,y)$ $\sum_{y \in \pi^*_X} V(x,y)$
	- \triangleright Utility to product y given by $E_y(\pi)$, the number of users y is exposed to

[Biswas, Patro, Ganguly, Gummadi, Chakraborty, 2023]

- Two-sided fairness
	- \triangleright Fairness for users: envy-freeness up to one (EF1)

 $\forall x, x' \in X, \exists y \in \pi_{x'} : u_x(\pi_x) \geq u_x(\pi_{x'} \setminus \{y\})$

 \triangleright Fairness for products: minimum exposure E

 $\forall y \in Y, E_{\nu}(\pi) \geq \overline{E}$

- Theorem: There exists an efficient algorithm that achieves EF1 among all users and the minimum exposure guarantee among at least $m k$ products
	- > The algorithm executes two variations round robin. At the first execution, it ensures EF1 for users and minimum exposure of all products. At the second execution, it ensures that k products are recommended to each use
- Future directions: Fairness to products in terms of the relevance, asymmetric entitlements of users

[Freeman, M, Shah, 2021]

- Many-to-many matching
	- \triangleright Each user is recommended k products
	- \triangleright Each product is recommended to k users
- Relevance of products to users given by $V: X \times Y \to \mathbb{R}$
- Recommendation policy π
	- \triangleright Each user *x* is recommended $\pi_x \subseteq Y$ with $|\pi_x| = k$
	- **►** Each product *y* is recommended to π _{*v*} ⊆ *X* with $|\pi$ _{*v*} $|$ = *k*
- Utilities
	- \triangleright Utility to user *x* given by $u_x(\pi_x) = \sum_{y \in \pi_x} V(x, y)$
	- \triangleright Utility to product y given by $u_y\big(\pi_y\big) = \sum_{\mathrm{x}\in\pi_y} V(x,y)$

[Freeman, M, Shah, 2021]

• Two-sided fairness

 \triangleright Fairness for users: envy-freeness up to one (EF1)

 $\forall x, x' \in X, \exists y \in \pi_{x'} : u_x(\pi_x) \geq u_x(\pi_{x'} \setminus \{y\})$

 \triangleright Fairness for products: envy-freeness up to one (EF1)

 $\forall y, y' \in Y, \exists x \in \pi_{y}: u_{y}(\pi_{y}) \geq u_{y}(\pi_{y} \setminus \{x\})$

- Theorem: When each side agrees on the ranking of the other side by relevance, a policy that is EF1 w.r.t. both users and products exists and can be computed efficiently
	- \triangleright Round robin by determining the order carefully
- Open question: Does a policy that is EF1 w.r.t. both sides always exist?
- Future directions: Non-stationary recommendations, different entitlements

Nash Social Welfare in ML

Multi-Armed Bandits

Exploration vs Exploitation

Regret: $R_T = T\mu^* - \sum_{t=1}^T \mu(t)$

Multi-Agent Multi-Armed Bandits

[Hossain, M, Shah, 2021]

What is a fair policy?

Multi-Agent Multi-Armed Bandits

[Hossain, M, Shah, 2021]

Distribution $p = [p_1, ..., p_K]$ gives expected reward $\sum_{j=1}^{K} p_j \cdot \mu_{ij}$ to agent $i\hat{a}$

 $p_1^a = 1$

Maximizing welfare functions \bullet

a) Utilitarian welfare
$$
\sum_{i=1}^{N} \sum_{j=1}^{K} p_j \cdot \mu_{ij}
$$

-
- c) Nash welfare $\prod_{i=1}^{N} \sum_{j=1}^{K} p_i \cdot \mu_{ij}$
-
- $p_2^a=0$ b) Egalitarian welfare $\min_{i \in N} \sum_{j=1}^{K} p_j \cdot \mu_{ij}$ $p_1^b = 1/2$ $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $p_2^b = 1/2$ $p_1^c = 2/3$ $p_2^c = 1/3$
- Regret: $R_T = NSW(p^*, \mu) \sum_{t=1}^T NSW(p(t), \mu)$

Explore First

[Hossain, M, Shah, 2021]

Exploration

- Pull each arm L times
- Calculate $\hat{\mu}_{ij} = \sum_{t=1}^{L} \frac{x_{ij}^t}{I}$ L

Exploitation

• $\hat{p} = argmax_{p}NSW(p, \hat{\mu})$

- When $L = \widetilde{\Theta}(N^{2/3}K^{-2/3}T^{2/3})$, then $E[R_T] = \widetilde{O}(N^{2/3}K^{1/3}T^{2/3})$
- When $L = \widetilde{\Theta}(N^{1/3}K^{-1/3}T^{2/3})$, then $E[R_T] = \widetilde{O}(N^{1/3}K^{2/3}T^{2/3})$

ϵ -Greedy

[Hossain, M, Shah, 2021]

For $t=1, 2...$ do

 \circ Toss a coin with success probability ε^t

If success do

Exploration

- *pull arm j*
- $j \leftarrow j + 1 \mod n$

Else do

Exploitation

• Calculate
$$
\hat{\mu}_{ij}^t = \sum_{s=1}^t \frac{X_{ij}^s}{n_{ij}^t}
$$

•
$$
p^t = argmax_p NSW(p, \hat{\mu}^t)
$$

- When $\varepsilon^t = \widetilde{\Theta}(N^{2/3}K^{1/3}t^{-1/3})$, then $E[R_T] = \widetilde{O}(N^{2/3}K^{1/3}T^{2/3})$
- When $\varepsilon^t = \widetilde{\Theta}(N^{1/3}K^{2/3}t^{-1/3})$, then $E[R_T] = \widetilde{O}(N^{1/3}K^{2/3}T^{2/3})$

Upper Confidence Bound (UCb)

[Hossain, M, Shah, 2021]

For $t=1, 2...$ do

$$
\circ \text{ Calculate } \hat{\mu}_{ij}^t = \sum_{s=1}^t \frac{X_{ij}^s}{n_{ij}^t}
$$

$$
\circ \; Calculate \; UCB(p) = NSW(p, \hat{\mu}^t) + \alpha^t \cdot \sum_{j=1}^K p_j \cdot \sqrt{\frac{\log(NKt)}{n_{ij}^t}}
$$

$$
\circ p^t = argmax_p UCB(p)
$$

- When $\alpha^t = N$, then $E[R_T] = \widetilde{O}(NKT^{1/2})$
- When $\alpha^t = \widetilde{\Theta}(N^{1/2}K^{1/2})$, then $E[R_T] = \widetilde{O}(N^{1/2}K^{3/2}T^{1/2})$

Upper Confidence Bound (UCb)

[Jones, Nguyen, Nguyen, 2023]

For $t=1, 2...$ do

$$
\circ \text{ Calculate } \hat{\mu}_{ij}^t = \sum_{s=1}^t \frac{X_{ij}^s}{n_{ij}^t} + \sqrt{\frac{\log(NKt)}{n_{ij}^t}}
$$

$$
\circ p^t = argmax_p NSW(p, \hat{\mu}^t)
$$

•
$$
E[R_T] = \widetilde{\mathcal{O}}(N^{1/2}K^{1/2}T^{1/2} + NK)
$$

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

• **Standard Notion of Fairness:** Statistical Parity or Equalized odds

Can *every* **group of individuals be treated at least as well as it can be classified in itself?**

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

- Utility of an individual: $u_i(f) = \mathbb{I}[f(x_i) = y_i]$
- Utility of a group: $u_S(f) = \frac{1}{|S|} \sum_{i \in S} u_i(f)$
- Optimal Classifier for a group: $f_s^* = argmax_{f \in F} u_s(f)$
- **Best-effort Guarantees**
	- Return f such that $u_S(f) \ge \alpha \cdot u_S(f_S^*)$, with $\alpha \le 1$, for each $S \subseteq N$
- **Observation:** No imperfect classifier f provides any reasonable guarantee to best-effort
	- Let $S = \{i \in N : f(x_i) \neq y_i\}$ and $u_s(f_s^*) = 1$
- **Randomized Classifiers:** Let D_f be a distribution over F
	- $u_i(D_f) = \mathbb{E}_{f \sim D_f}[u_i(f)]$
	- $u_S(D_f) = \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{f \sim D_f}[u_i(f)]$

[Krishnaswamy, Jiang, Wang, Cheng, Munagala, 2021]

Theorem: There is an instance in which there is no distribution D_f over classifiers

such that for all $S \subseteq N$ with $u_{s}(f_{S}^{*}) = 1$, $u_{s}\big(D_{f}\big) > \frac{|S|}{|N|}$

- $D_f^{NSW} = argmax_{D_f \in \Delta(F)} \prod_{i \in N} u_i(D_f)$
- **Theorem:**
	- 1. For every group $S \subseteq N$ that admits a perfect classifier, $u_S(D_f^{NSW}) \geq \frac{|S|}{|N|}$
	- 2. For every group $S \subseteq N$, $u_S(D_f^{NSW}) \geq \frac{|S|}{|N}$ $\frac{|S|}{|N|} [u_S(f_S^*)]^2$

Core in ML

Goal: Choose f_{θ} : $\mathbb{R}^d \to \mathbb{R}$ from $F = \{f_{\theta} : \theta \in P \subseteq \mathbb{R}^d\}$ \bullet

Goal: Choose f_{θ} : $\mathbb{R}^d \to \mathbb{R}$ from $F = \{f_{\theta} : \theta \in P \subseteq \mathbb{R}^d\}$ \bullet

[Chaudhury, Li, Kang, Li, Mehta, 2022]

- **Utility of each agent:**
	- $u_i(\theta) = M \mathbb{E}_{(x,y)\sim D_i} \left[\ell_i(f_{\theta}(x), y) \right]$
- **Goal:** Choose θ that is fair for all agents
- **Core:** A parameter vector $\theta \in P$ is in the core if for all $\theta' \in P$ and $S \subseteq N$, it holds

$$
u_i(\theta) \ge \frac{|S|}{|N|} u_i(\theta')
$$
 for all $i \in S$, with at lost one strict inequality

- **Pareto Optimality:** A parameter vector $\theta \in P$ is Pareto Optimal if there exists no $\theta' \in P$ such that $u_i(\theta') \geq u_i(\theta)$ for all $i \in N$, with at lost one strict inequality
- **Proportionality:** A parameter vector $\theta \in P$ is proportionally fair if for all $\theta' \in P$, it holds

$$
u_i(\theta) \ge \frac{u_i(\theta')}{|N|} \text{ for all } i \in N
$$

[Chaudhury, Li, Kang, Li, Mehta, 2022]

- **Theorem:** When the agents' utilities are continuous and the set of maximizers of any conical combination of the agents' utilities is convex, a parameter vector $\theta \in P$ in the core always exists
- **Theorem:** When the agents' utilities are concave, then the parameter vector $\theta \in P$ that maximizes the NSW is in the core

maximize $\prod_{i\in N} u_i(\theta)$ maximize $\sum_{i\in N} \log(u_i(\theta))$

subject to $\theta \in P$ subject to $\theta \in P$

Core in Al

Peer Review Model

[Aziz, M, Shah, 2023]

- A set $N = [n]$ of authors that serve as reviewers
- Each author *i* submits a set of papers P_i

An assignment of $\bigcup_{i \in N} P_i$ over N is *valid* if:

- No agent is assigned to review her own papers
- Each paper is assigned to k_p reviewers
- Each reviewer is assigned to review up to k_a papers

NeurIPS

Is it possible to create a reviewing procedure that prevents any subcommunity from benefiting by withdrawing from a large conference?

Core as A Notion of Fairness

Peer Review Model

[Aziz, M, Shah, 2023]

An assignment R is in the core if there is no $N' \subseteq N$, $P'_i \subseteq P_i$ for $i \in N'$ and a valid assignment R' of $\overline{U}_{i\in\mathbb{N}}$, P'_i over N' such that $\forall i \in N', R' >_i R$

Theorem: There exists an efficient algorithm, called *CoBRA*, that finds an assignment in the core.

Experiments with Rea Data

- TPMS (Toronto Paper Matching System)
- PR4A (Peer Review for All)

