

CSCI 699

Fairness in Clustering Evi Micha

Clustering

Clustering in ML/Data Analysis

• Goal:

- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar

Clustering in ML/Data Analysis

• Goal:

- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar

k=3

Clustering in Economics/OR

• Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)

Centroid Clustering

Center-Based Clustering

• Input:

 \succ Set N of n data points

 \succ Set *M* of *m* feasible cluster centers

 $\succ \forall i, j \in N \cup M$: we have d(i, j) (which forms a *Metric Space*)

- $d(i, i) = 0, \forall i \in N \cup M$
- $d(i,j) = d(j,i), \forall i,j \in N \cup M$
- $d(i, j) \le d(i, \ell) + d(\ell, j), \forall i, j, \ell \in N \cup M$, (Triangle Inequality)

• Output:

≻ A set $C \subseteq M$ of k centers, i.e. $C = \{c_1, ..., c_k\}$

> Each data point is assigned to its closest cluster center

•
$$C(i) = argmin_{c \in C} d(i, c)$$

Famous Objective Functions

- *k*-median: Minimizes the sum of the distances
 - $\min_{\substack{C \subseteq M:\\ |C| \le k}} \sum_{i \in N} d(i, C(i))$
- *k*-means: Minimizes the sum of the square of the distances
 - $\min_{\substack{C \subseteq M:\\ |C| \le k}} \sum_{i \in N} d^2(i, C(i))$
- *k*-center: Minimizes the maximum distance
 - $\min_{\substack{C \subseteq M: \ i \in N \\ |C| \le k}} d(i, C(i))$

U Why do we need fairness:

• Many decisions are made at least (partly) using algorithms

> Each point wishes to be as close as possible to some center

- **ML applications:** Closer to center \Rightarrow better represented by the center
- **FL** applications: Closer to the center \Rightarrow less travel distance to the facility

k = 3

CSCI 699 - Evi Micha

Fairness Through Proportionality

- *Proportionally Fair Clustering:*
 - Every x% of the data points can select x% of the cluster centers
 - Every group of n/k agents "deserves" its own cluster center

Core

- Definition in Committee Selection: W is in the core if
 - ▶ For all $S \subseteq N$ and $T \subseteq M$
 - ▶ If $|S| \ge |T| \cdot n/k$ (large)
 - ➤ Then, $u_i(W) \ge u_i(S)$ for some $i \in S$
 - "If a group can afford T, then T should not be a (strict) Pareto improvement for the group"

□ Given clustering solution *C*, C(i) denotes the closest center to $i \in N$

- **Definition in Clustering:** *C* is in the core if
 - For all $S \subseteq N$ and $y \subseteq M$
 - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
 - ➤ Then, $d(i, C(i)) \le d(i, y)$ for some $i \in S$
 - "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

Core in the Line

- Theorem: In 1-D, a clustering solution in the core always exists
- Informal Proof:
- Move from left to right, making every [n/k]-th point a cluster center

- Tree G=(V, E)
- Every vertex is a *data point* and a *feasible cluster center*
- Every edge has weight equal to 1
- ST(x) denotes the subtree rooted at node x

Tree-Core Algorithm

1. $C = \emptyset$; Root G at an arbitrary node r 2. For level equal to the height of the tree to 1 do 3. For every node x in the current level 4. $If ST(x) \ge \frac{n}{k} do$ 5. $C = C \cup x$ 6. $G = G \setminus ST(x)$ 7. If |G| > 08. $C = C \cup r$ 9. Return C

- Theorem: Tree-Core Algorithm returns a clustering solution *C* in the core
- Informal Proof:
- Let p(i) be the closest ancestor of i in C
- Observation: $d(i, p(i)) < d(i, j), \forall j \notin ST(p(i))$
- Case I: There are $i, i' \in S$, $ST(p(i)) \cap ST(p(i')) = \emptyset$

- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let p(i) be the closest ancestor of i in C
- Observation: $d(i, p(i)) < d(i, j), \forall j \notin ST(p(i))$
- Case II: There are $i, i' \in S$, $p(i) \in ST(p(i'))$

Core in Trees

- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let p(i) be the closest ancestor of i in C
- Observation: $d(i, p(i)) < d(i, j), \forall j \notin ST(p(i))$
- Case III: There are $i, i' \in S$, p(i)=p(i')

- Theorem: A clustering solution in the core does not always exist
- Proof:

- Theorem: A clustering solution in the core does not always exist
- Proof:

- Theorem: A clustering solution in the core does not always exist
- Proof:

- Theorem: A clustering solution in the core does not always exist
- Proof:

α -Core

- **Definition in Clustering:** *C* is in the core if
 - For all $S \subseteq N$ and $y \subseteq M$
 - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
 - \succ Then, d(i, C(i)) ≤ α · d(i, y) for some i ∈ S
 - "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

α-Core:

A solution C is in the α -core, with $\alpha \ge 1$ if there is **no** group of points $S \subseteq N$ with $|S| \ge n/k$ and $y \in M$ such that:

 $\forall i \in S, \alpha \cdot d(i, y) < d(i, C(i))$

• $B(c, \delta)$ denotes the ball centered at c with radius δ

Greedy Capture

- *1.* δ ←0; C ←0
- 2. While $N \neq 0$ do
- 3. Smoothly increase δ
- 4. While $\exists c \in C$ such that $|B(c, \delta) \cap N| \ge 1$ do
- 5. $C: N \leftarrow N \setminus (B(c, \delta) \cap N)$
- 6. While $\exists c \in M \setminus C$ such that $|B(c, \delta) \cap N| \ge n/k$ do
- 7. $C \leftarrow C \cup c$
- 8. $N \leftarrow N \setminus (B(c, \delta) \cap N)$

9. Return C

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the $(1 + \sqrt{2})$ -core.
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S, (1 + \sqrt{2}) \cdot d(i, c) < d(i, C(i))$

$$\begin{split} \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c')}{d(i^*,c)}\right) \\ &\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,c')}{d(i^*,c)}\right) \text{ (triangle inequality)} \\ &\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,i)+d(i,c')}{d(i^*,c)}\right) \text{ (triangle inequality)} \\ &\leq \min\left(\frac{d(i^*,c)}{d(i,c)}, 2 + \frac{d(i,c)}{d(i^*,c)}\right) (d(i,c') \leq d(i^*,c)) \\ &\leq \max_{z \geq 0} (\min(z, 2 + 1/z)) \leq 1 + \sqrt{2} \end{split}$$

Core

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the $(1 + \sqrt{2})$ -core for any metric space
- Theorem [Chen et al. '19]: For all $\alpha < 2$ and all metric spaces, a clustering solution in the α -core is not guaranteed to exist
- Theorem [Chen et al. '19]: When N = M, for all $\alpha < 1.5$ and all metric spaces, a clustering solution in the α -core is not guaranteed to exist
- Theorem [M and Shah '20]: Greedy Capture returns a clustering solution in the 2core for Euclidean metric space
- Theorem [M and Shah '20]: For Euclidean metric space, for all $\alpha < 1.155$, a clustering solution in the α -core is not guaranteed to exist
- Theorem [M and Shah '20]: For L_1 and L_∞ , for all $\alpha < 1.4$, a clustering solution in the α -core is not guaranteed to exist
- Theorem [M and Shah '20]: For Euclidean metric space, checking whether a clustering solution in the core exists is an NP-hard problem

Justified Representation

- Definition in Committee Selection: W satisfies JR if
 - For all $S \subseteq N$
 - ▶ If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
 - ▶ Then, $|A_i \cap W| \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
- Definition in Clustering: C satisfies JR if
 - $\succ \text{ For all } S \subseteq N$
 - ▶ If $|S| \ge n/k$ (large) and $|\cap_{i \in S} B(i, r) \cap M| \ge 1$ (cohesive)
 - i.e. $\forall i \in S, d(i, c) \leq r$ for some $c \in M$
 - ➤ Then, $|B(i,r) \cap C| \ge 1$ for some $i \in S$
 - i.e. $d(i, C(i)) \le r$ for some $i \in S$
 - "If a group deserves one cluster center and has a center that has distance at most r from each of them, then not every member should have distance larger than r from all the centers in the clustering"

Justified Representation

• Question: What is the relationship between JR and core in clustering?

- 2. JR \Rightarrow core
- 3. JR=core
- 4. JR \neq core

Justified Representation

- Theorem [Kellerhals and Peters '24]: Greedy Capture returns a clustering solution that is JR
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S$, $d(i,c) \le r$ and d(i,C(i)) > r
- If none of $i \in S$ has been disregarded, then $|B(c, \delta)| \ge n/k$ and then c is included in the committee
- Otherwise, some of $i \in S$ has been disregarder when it captured from a ball centered at c with radius at most $r \stackrel{i^*}{\underset{}{}}$

- **Definition:** *C* satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4

- **Definition:** *C* satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4

- **Definition:** *C* satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4

- **Definition:** *C* satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4

- **Definition:** *C* satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4

- Theorem [Jung et al. '19]: Greedy Capture returns a clustering solution that is 2-IF
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that some $i \in N$, $|B(i, r_i) \cap C| = 0$
- If $|B(i, r_i)| \ge n/k$, then *i* is included in the solution
- Otherwise, some of $i' \in B(i, r_i)$ has been disregarded when it captured from a ball centered at i'' with radius at most r_i
- From triangle inequality, $d(i, i'') \le d(i, i') + d(i', i'') \le 2 \cdot r_i$

Core, JR and IF

- Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and in the $1 + \sqrt{2}$ -core .
- Theorem [Kellerhals and Peters '24]: Any clustering solution that satisfies JR, it also satisfies 2-IF and is in the $1 + \sqrt{2}$ -core.
- Theorem [Kellerhals and Peters '24]:

 \Box Any clustering solution that satisfies α -IF, it is also in the $2 \cdot \alpha$ -core

 \Box Any clustering solution that is in the α -core, it also satisfies $(1 + \alpha)$ -IF
Core, JR and IF vs k-means, kmedian, k-center

k = 3

Non-Centroid Clustering

Non-Centroid Clustering

- Input:
 - Set N of n data points

Non-Centroid Clustering

- Input:
 - Set N of n data points
- Output:
 - Partition the individuals into k clusters, $C = \{C_1, \dots, C_k\}$

• Goal: Similar individuals are assigned to the same cluster

Core in Non-Centroid Clustering

- Definition in Committee Selection: W is in the core if
 - ▶ For all $S \subseteq N$ and $T \subseteq M$
 - ▶ If $|S| \ge |T| \cdot n/k$ (large)
 - ➤ Then, $u_i(W) \ge u_i(S)$ for some $i \in S$
- Definition in Non-Centroid Clustering: C is in the α -core, with $\alpha \ge 1$, if
 - \succ For all *S* ⊆ *N*
 - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
 - ➤ Then, $\ell_i(C(i)) \leq \alpha \cdot \ell_i(S)$ for some *i* ∈ S
- Average Loss: For each $S \subseteq N$, $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- Maximum Loss: For each $S \subseteq N$, $\ell_i(S) = \max_{i' \in S} d(i, i')$

Core in Non-Centroid Clustering

- Theorem [Caragiannis et al. '24]:
- Average Cost
 - A variation of Greedy Capture returns a clustering solution in the O(n/k)-core
 - For $\alpha < 1.3$, a clustering solution in the α -core is not guaranteed to exist
 - Maximum Cost
 - A variation of Greedy Capture returns a clustering solution in the 2core

• Open Questions:

- Average Cost: Does a clustering solution in the O(1)-core always exist?
- Maximum Cost: Does a clustering solution in the core always exist?

- Definition in Committee Selection: W satisfies FJR if
 For all S ⊆ N, T ⊆ M and ℓ, β ∈ {1, ..., k}
 If |S| ≥ |T| · ⁿ/_k (large) and u_i(T) ≥ β, ∀i ∈ S (cohesive)
 Then, u_i(W) ≥ β for some i ∈ S
- Definition in Non-Centroid Clustering: C satisfies α -FJR, with $\alpha \ge 1$, if
 - For all $S \subseteq N$ and $\beta \in \mathbb{R}$
 - ▶ If $|S| \ge n/k$ (large) and $\ell_i(S) \le \beta$, $\forall i \in S$ (cohesive)
 - ➤ Then, $\ell_i(C(i)) \leq \alpha \cdot \beta$ for some $i \in S$
- Average Loss: For each $S \subseteq N$, $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- Maximum Loss: For each $S \subseteq N$, $\ell_i(S) = \max_{i' \in S} d(i, i')$

Greedy Cohesive Algorithm

1. $N' \leftarrow N$ 2. $j \leftarrow 0$ 3. While $|N'| \ge n/k$ 4. $j \leftarrow j + 1$ 5. $C_j \leftarrow argmin_{S \subseteq N':|S| \ge n/k} \max_{i \in S} \ell_i(S)$ 6. $N' \leftarrow N' \setminus S$ 7. If $|N'| \ge 0$ 8. $j \leftarrow j + 1$ 9. $C_j \leftarrow N'$ 10. Return $\{C_1, ..., C_j\}$

- Theorem [Caragiannis et al. '24]: Greedy Cohesive Algorithms returns a clustering solution that is FJR
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge n/k$ such that
 - \succ $\ell_i(S) ≤ β$, ∀*i* ∈ *S* (cohesive)
 - $\geq \ell_i(C(i)) > \beta \text{ for all } i \in S$
- Let i^* be the first agent in S that was assigned to a cluster C_i
- Then we have that $\max_{i \in C_j} \ell_i(C_j) \ge \ell_{i^*}(C_j) > \beta$
- But then the algorithm would choose S instead of C_j

- Theorem [Caragiannis et al. '24]:
 - Greedy Cohesive Algorithm returns a clustering solution that satisfies FJR
 - Average Cost
 - Greedy Capture returns a clustering solution that satisfies 4-FJR
 - Maximum Cost
 - Greedy Capture returns a clustering solution that satisfies 2-FJR

• Open Question:

• Can we efficiently find a solution that satisfies FJR?

Classic Objectives

- *k*-median: Minimizes the within-cluster sum of distances
 - $\min_{C} \sum_{j \in [k]} \frac{1}{|C_j|} \sum_{i,i' \in C_j} d(i,i')$
- *k*-means: Minimizes the within-cluster of the square of the distances

•
$$\min_{C} \sum_{j \in [k]} \frac{1}{|C_j|} \sum_{i,i' \in C_j} d^2(i,i')$$

- *k*-center: Minimizes the maximum distance
 - $\min_{\substack{C:\\ i \in N}} \max_{i \in N} d(i, C(i))$ $|C| \le k$

Proportional Fairness vs Classic Objectives

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or

$$\frac{1}{|\mathcal{C}(i)| - 1} \sum_{i' \in \mathcal{C}(i)} d(i, i') \leq \frac{1}{|\mathcal{C}_j|} \sum_{i' \in \mathcal{C}_j} d(i, i')$$

- Theorem: A envy-free clustering does not always exist

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or

$$\frac{1}{|\mathcal{C}(i)| - 1} \sum_{i' \in \mathcal{C}(i)} d(i, i') \leq \frac{1}{|\mathcal{C}_j|} \sum_{i' \in \mathcal{C}_j} d(i, i')$$

 Theorem: Deciding if there exists an envy-free solution is an NPhard problem

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or

$$\frac{1}{|C(i)|-1} \sum_{i' \in C(i)} d(i,i') \leq \frac{\alpha}{|C_j|} \sum_{i' \in C_j} d(i,i')$$

• Theorem: An O(1)-envy-free clustering always does (and can be computed efficiently)

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or $\ell_i(C(i) \setminus \{i\}) \leq \ell_i(C(j))$

- Average Loss: For each $S \subseteq N$, $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- Maximum Loss: For each $S \subseteq N$, $\ell_i(S) = \max_{i' \in S} d(i, i')$
- Minimum Loss: For each $S \subseteq N$, $\ell_i(S) = \min_{i' \in S} d(i, i')$

Core vs Envy-Freeness

k = 2

Demographic Fairness [Chierichetti et al. 2017]

• Demographic Groups:

- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster

Demographic Fairness [Chierichetti et al. 2017]

• Demographic Groups:

- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$

- Theorem:
 - k-center: 4 approximation with balance 1/t
 - k-median: $2 + \sqrt{3}$ approximation with balance 1
 - k-median:t + 2 + $\sqrt{3}$ –approximation with balance 1/t

Bounded Representation [Bercea et al. 2019]

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- For (α, β) bounded representation we require that

$$\alpha \le |G_i \cap C_j| \le \beta, \quad \forall i \in [t] \text{ and } \forall j \in [k]$$

• Standard objectives such as k-center, k-median and k-means are maximized subject to (α, β) - bounded representation constraints

Socially Fair Clustering [Makarychev et al. 2021]

- Let G_1, \dots, G_t be the protected groups (not necessarily disjoint)
- Measure the ℓ_p —loss for each group, i.e. Loss(G_j)= $\sum_{i \in G_j} d(i, C)^p$
- Goal: Minimize the maximum loss over all the t groups
- Theorem: There exists a polynomial time algorithm that finds a $O(e^{O(p)} \frac{\log t}{\log\log t})$ -approximation to the socially fair ℓ_p clustering problem

Fair Range [Hotegni et al. 2023]

- Let G_1, \ldots, G_t be the protected groups
- Fair Range: $\alpha_j \leq |C \cap G_j| \leq \beta_j$
- Theorem: There exists a polynomial time algorithm that finds constant approximation ℓ_p clustering problem with fair range for any $p \in [1, \inf]$