

CSCI 699

Evi Micha Fairness in Clustering

Clustering

Clustering in ML/Data Analysis

• Goal:

- \triangleright Analyze data sets to summarize their characteristics
- \geq Objects in the same group are similar

Clustering in ML/Data Analysis

• Goal:

- \triangleright Analyze data sets to summarize their characteristics
- \geq Objects in the same group are similar

k=3

Clustering in Economics/OR

· Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)

Centroid Clustering

Center-Based Clustering

• Input:

 \triangleright Set N of n data points

 \triangleright Set M of m feasible cluster centers

 $\forall v, j \in N \cup M$: we have $d(i, j)$ (which forms a **Metric Space**)

- $d(i, i) = 0, \forall i \in N \cup M$
- $d(i, j) = d(j, i), \forall i, j \in N \cup M$
- $d(i, j) \leq d(i, \ell) + d(\ell, j)$, $\forall i, j, \ell \in \mathbb{N} \cup \mathbb{M}$, (Triangle Inequality)

• Output:

≻ A set $C \subseteq M$ of k centers, i.e. $C = \{c_1, ..., c_k\}$

 \triangleright Each data point is assigned to its closest cluster center

•
$$
C(i) = argmin_{c \in C} d(i, c)
$$

Famous Objective Functions

- \bullet k -median: Minimizes the sum of the distances
	- \cdot min $\min_{C \subseteq M:} \sum_{i \in N} d(i, C(i))$ $|C| \leq k$
- k -means: Minimizes the sum of the square of the distances
	- \cdot min $\min_{C \subseteq M:} \sum_{i \in N} d^2(i, C(i))$ $|C| \leq k$
- k -center: Minimizes the maximum distance
	- min $\vec{C} \vec{\subseteq} \vec{M}$: $|C| \leq k$ max $i\overline{\epsilon N}$ $d(i, C(i))$

\Box Why do we need fairness:

• Many decisions are made at least (partly) using algorithms

 \triangleright Each point wishes to be as close as possible to some center

- **ML applications:** Closer to center ⇒ better represented by the center
- **FL applications:** Closer to the center ⇒ less travel distance to the facility

 $k=3$

CSCI 699 - Evi Micha

Fairness Through Proportionality

- *Proportionally Fair Clustering:*
	- *Every x% of the data points can select x% of the cluster centers*
	- *Every group of n/k agents "deserves" its own cluster center*

Core

- Definition in Committee Selection: W is in the core if
	- \triangleright For all $S \subseteq N$ and $T \subseteq M$
	- \triangleright If $|S| \geq |T| \cdot n/k$ (large)
	- **►** Then, $u_i(W) \ge u_i(S)$ for some $i \in S$
	- \triangleright "If a group can afford T, then T should not be a (strict) Pareto improvement for the group"

 \Box Given clustering solution C, C(i) denotes the closest center to $i \in N$

- Definition in Clustering: C is in the core if
	- \triangleright For all $S \subseteq N$ and $y \subseteq M$
	- \triangleright If $|S| \geq n/k$ (large)
	- \triangleright Then, $d(i, C(i)) \leq d(i, y)$ for some $i \in S$
	- \triangleright "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

Core in the Line

- Theorem: In 1-D, a clustering solution in the core always exists
- Informal Proof:
- Move from left to right, making every $\lfloor n/k \rfloor$ -th point a cluster center
- $k=3$

- Tree $G=(V, E)$
- Every vertex is a *data point* and a *feasible cluster center*
- Every edge has weight equal to 1
- ST(x) denotes the subtree rooted at node x

Tree-Core Algorithm

1. $C = \emptyset$; Root G at an arbitrary node r *2. For level equal to the height of the tree to 1 do 3. For every node x in the current level* 4. *If* $ST(x) \ge \frac{n}{L}$ \boldsymbol{k} *do* 5. $C = C \cup x$ 6. $G = G \setminus ST(x)$ *7. If* $|G| > 0$ 8. $C = C \cup r$ *9. Return*

- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let $p(i)$ be the closest ancestor of i in C
- Observation: $d(i, p(i)) < d(i, j)$, $\forall j \notin ST(p(i))$
- Case I: There are $i, i' \in S$, $ST(p(i)) \cap ST(p(i')) = \emptyset$

- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let $p(i)$ be the closest ancestor of i in C
- Observation: $d(i, p(i)) < d(i, j)$, $\forall j \notin ST(p(i))$
- Case II: There are *i*, $i' \in S$, $p(i) \in ST(p(i'))$

Core in Trees

- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let $p(i)$ be the closest ancestor of i in C
- Observation: $d(i, p(i)) < d(i, j)$, $\forall j \notin ST(p(i))$
- Case III: There are *i*, $i' \in S$, $p(i) = p(i')$

- Theorem: A clustering solution in the core does not always exist
- Proof:

- Theorem: A clustering solution in the core does not always exist
- Proof:

- Theorem: A clustering solution in the core does not always exist
- Proof:

- Theorem: A clustering solution in the core does not always exist
- Proof:

α -Core

- Definition in Clustering: C is in the core if
	- \triangleright For all $S \subseteq N$ and $y \subseteq M$
	- \triangleright If $|S| \geq n/k$ (large)
	- \triangleright Then, $d(i, C(i)) \leq \alpha \cdot d(i, y)$ for some $i \in S$
	- \triangleright "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

-Core:

A solution C is in the α *-core, with* $\alpha \geq 1$ *if there is no group of points* $S \subseteq N$ *with* $|S| \ge n/k$ *and* $y \in M$ *such that:*

 $\forall i \in S, \alpha \cdot d(i, y) < d(i, C(i))$

• $B(c,\delta)$ denotes the ball centered at c with radius δ

Greedy Capture

- 1. $\delta \leftarrow 0$; $C \leftarrow 0$
- 2. *While* $N \neq 0$ *do*
- *3. Smoothly increase*
- *4.* While \exists *c* ∈ *C* such that $|B(c, \delta) \cap N| \ge 1$ do
- 5. $C: N \leftarrow N \setminus (B(c, \delta) \cap N)$
- *6.* While \exists *c* ∈ *M* \ *C* such that $|B(c, \delta) \cap N| \ge n/k$ do
- 7. $C \leftarrow C \cup c$
- 8. $N \leftarrow N \setminus (B(c, \delta) \cap N)$

9. Return

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the $(1 + \sqrt{2})$ -core.
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \geq \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S$, $(1 + \sqrt{2}) \cdot d(i, c) < d(i, C(i))$ ι ∗

$$
\min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c')}{d(i^*,c)}\right)
$$
\n
$$
\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,c')}{d(i^*,c)}\right) \text{ (triangle inequality)}
$$
\n
$$
\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,i)+d(i,c')}{d(i^*,c)}\right) \text{ (triangle inequality)}
$$
\n
$$
\leq \min\left(\frac{d(i^*,c)}{d(i,c)}, 2 + \frac{d(i,c)}{d(i^*,c)}\right) \text{ (d(i,c')} \leq d(i^*,c)
$$
\n
$$
\leq \max_{z\geq 0} (\min(z, 2 + 1/z)) \leq 1 + \sqrt{2}
$$

Core

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the $(1 + \sqrt{2})$ -core for any metric space
- Theorem [Chen et al. '19]: For all $\alpha < 2$ and all metric spaces, a clustering solution in the α -core is not guaranteed to exist
- Theorem [Chen et al. '19]: When $N = M$, for all $\alpha < 1.5$ and all metric spaces, a clustering solution in the α -core is not guaranteed to exist
- Theorem [M and Shah '20]: Greedy Capture returns a clustering solution in the 2- core for Euclidean metric space
- Theorem [M and Shah '20]: For Euclidean metric space, for all $\alpha < 1.155$, a clustering solution in the α -core is not guaranteed to exist
- Theorem [M and Shah '20]: For L_1 and L_{∞} , for all $\alpha < 1.4$, a clustering solution in the α -core is not guaranteed to exist
- Theorem [M and Shah '20]: For Euclidean metric space, checking whether a clustering solution in the core exists is an NP-hard problem

Justified Representation

- Definition in Committee Selection: W satisfies JR if
	- \triangleright For all $S \subseteq N$
	- \triangleright If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
	- \triangleright Then, $|A_i \cap W| \geq 1$ for some $i \in S$
	- \triangleright "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
- Definition in Clustering: C satisfies JR if
	- \triangleright For all $S \subseteq N$
	- \triangleright If $|S| \ge n/k$ (large) and $| \bigcap_{i \in S} B(i,r) \cap M | \ge 1$ (cohesive)
		- o i.e. $\forall i \in S$, $d(i, c) \leq r$ for some $c \in M$
	- \triangleright Then, $|B(i, r) \cap C| \ge 1$ for some $i \in S$
		- o i.e. $d(i, C(i))$ ≤ r for some $i \in S$
	- \triangleright "If a group deserves one cluster center and has a center that has distance at most r from each of them, then not every member should have distance larger than r from all the centers in the clustering"

Justified Representation

• Question: What is the relationship between JR and core in clustering?

- 2. JR \Rightarrow core
- 3. JR=core
- 4. JR \neq core

Justified Representation

- Theorem [Kellerhals and Peters '24]: Greedy Capture returns a clustering solution that is JR
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \geq \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S$, $d(i, c) \leq r$ and $d(i, C(i)) > r$
- If none of $i \in S$ has been disregarded, then $|B(c, \delta)| \ge n/k$ and then c is included in the committee
- Otherwise, some of $i \in S$ has been disregarder when it captured from a ball centered at c with radius at most $r \overline{1}$ ∗

- Definition: C satisfies Individual Fairness (IF) if
	- \triangleright $N = M$
	- \triangleright Let $r_i = \min_{r \in \mathbb{R}} \{|B(i, r) \cap N| \ge n/k\}$
	- \triangleright For all $i \in N$, $|B(i, r_i) \cap C| \geq 1$
	- \triangleright "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: $k = 4$

- Definition: C satisfies Individual Fairness (IF) if
	- \triangleright $N = M$
	- \triangleright Let $r_i = \min_{r \in \mathbb{R}} \{|B(i, r) \cap N| \ge n/k\}$
	- \triangleright For all $i \in N$, $|B(i, r_i) \cap C| \geq 1$
	- \triangleright "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- $k = 4$ • Proof:

- Definition: C satisfies Individual Fairness (IF) if
	- \triangleright $N = M$
	- \triangleright Let $r_i = \min_{r \in \mathbb{R}} \{|B(i, r) \cap N| \ge n/k\}$
	- \triangleright For all $i \in N$, $|B(i, r_i) \cap C| \geq 1$
	- \triangleright "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- $k = 4$ • Proof:

- Definition: C satisfies Individual Fairness (IF) if
	- \triangleright $N = M$
	- \triangleright Let $r_i = \min_{r \in \mathbb{R}} \{|B(i, r) \cap N| \ge n/k\}$
	- \triangleright For all $i \in N$, $|B(i, r_i) \cap C| \geq 1$
	- \triangleright "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- $k = 4$ • Proof:

- Definition: C satisfies Individual Fairness (IF) if
	- \triangleright $N = M$
	- \triangleright Let $r_i = \min_{r \in \mathbb{R}} \{|B(i, r) \cap N| \ge n/k\}$
	- \triangleright For all $i \in N$, $|B(i, r_i) \cap C| \geq 1$
	- \triangleright "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- $k = 4$ • Proof:

- Theorem [Jung et al. '19]: Greedy Capture returns a clustering solution that is 2-IF
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that some $i \in N$, $|B(i, r_i) \cap C| = 0$
- If $|B(i, r_i)| \ge n/k$, then *i* is included in the solution
- Otherwise, some of $i' \in B(i, r_i)$ has been disregarded when it captured from a ball centered at i'' with radius at most r_i
- From triangle inequality, $d(i, i'') \leq d(i, i') + d(i', i'') \leq 2 \cdot r_i$

Core, JR and IF

- Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and in the $1 + \sqrt{2}$ -core.
- Theorem [Kellerhals and Peters '24]: Any clustering solution that satisfies JR, it also satisfies 2-IF and is in the $1 + \sqrt{2}$ -core.
- Theorem [Kellerhals and Peters '24]:

 \Box Any clustering solution that satisfies α-IF, it is also in the 2 ⋅ α -core

 \Box Any clustering solution that is in the α -core, it also satisfies $(1 + \alpha)$ -IF
Core, JR and IF vs k-means, kmedian, k-center

 $k=3$

Non-Centroid Clustering

Non-Centroid Clustering

- · Input:
	- Set N of n data points

Non-Centroid Clustering

- · Input:
	- Set N of n data points
- Output:
	- Partition the individuals into k clusters, $C = \{C_1, ..., C_k\}$

• Goal: Similar individuals are assigned to the same cluster

Core in Non-Centroid Clustering

- Definition in Committee Selection: W is in the core if
	- \triangleright For all $S \subseteq N$ and $T \subseteq M$
	- \triangleright If $|S| \ge |T| \cdot n/k$ (large)
	- \triangleright Then, $u_i(W) \ge u_i(S)$ for some $i \in S$
- Definition in Non-Centroid Clustering: C is in the α -core, with $\alpha \geq 1$, if
	- \triangleright For all $S \subseteq N$
	- \triangleright If $|S| \geq n/k$ (large)
	- \triangleright Then, $\ell_i(C(i)) \leq \alpha \cdot \ell_i(S)$ for some $i \in S$
- **Average Loss:** For each $S \subseteq N$, $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- **Maximum Loss:** For each $S \subseteq N$, $\ell_i(S) = \max_{S \subseteq S}$ i ['] ϵ ₅ $d(i, i')$

Core in Non-Centroid Clustering

- Theorem [Caragiannis et al. '24]:
- Average Cost
	- A variation of Greedy Capture returns a clustering solution in the $O(n/k)$ -core
	- For $\alpha < 1.3$, a clustering solution in the α -core is not guaranteed to exist
	- Maximum Cost
		- A variation of Greedy Capture returns a clustering solution in the 2 core

• **Open Questions:**

- Average Cost: Does a clustering solution in the $O(1)$ -core always exist?
- Maximum Cost: Does a clustering solution in the core always exist?

- Definition in Committee Selection: W satisfies FJR if \triangleright For all $S \subseteq N, T \subseteq M$ and $\ell, \beta \in \{1, ..., k\}$ \triangleright If $|S| \ge |T| \cdot \frac{n}{k}$ (large) and $u_i(T) \ge \beta$, $\forall i \in S$ (cohesive) \triangleright Then, $u_i(W) \geq \beta$ for some $i \in S$
- Definition in Non-Centroid Clustering: C satisfies α -FJR, with $\alpha \geq 1$, if
	- \triangleright For all $S \subseteq N$ and $\beta \in \mathbb{R}$
	- \triangleright If $|S| \ge n/k$ (large) and $\ell_i(S) \le \beta$, $\forall i \in S$ (cohesive)
	- \triangleright Then, $\ell_i(C(i)) \leq \alpha \cdot \beta$ for some $i \in S$
- **Average Loss:** For each $S \subseteq N$, $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- **Maximum Loss:** For each $S \subseteq N$, $\ell_i(S) = \max_{S \subseteq S}$ i ^{ϵ} ϵ s $d(i, i')$

Greedy Cohesive Algorithm

1. $N' \leftarrow N$ 2. $j \leftarrow 0$ 3. While $|N'| \ge n/k$ 4. $j \leftarrow j + 1$ 5. $C_j \leftarrow argmin_{S \subseteq N':|S| \ge n/k} \max_{i \in S} \ell_i(S)$ 6. $N' \leftarrow N' \setminus S$ 7. If $|N'| \ge 0$ 8. $j \leftarrow j + 1$ $C_i \leftarrow N'$ 9. 10. Return { C_1 , ..., C_i }

- Theorem [Caragiannis et al. '24]: Greedy Cohesive Algorithms returns a clustering solution that is FJR
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \geq n/k$ such that
	- \triangleright $\ell_i(S) \leq \beta$, $\forall i \in S$ (cohesive)
	- \triangleright $\ell_i(C(i)) > \beta$ for all $i \in S$
- Let i^* be the first agent in S that was assigned to a cluster C_i
- Then we have that max $i \in C_j$ $\ell_i(C_j) \geq \ell_{i^*}(C_j) > \beta$
- But then the algorithm would choose S instead of C_i

- Theorem [Caragiannis et al. '24]:
	- Greedy Cohesive Algorithm returns a clustering solution that satisfies FJR
	- Average Cost
		- Greedy Capture returns a clustering solution that satisfies 4-FJR
	- Maximum Cost
		- Greedy Capture returns a clustering solution that satisfies 2-FJR

• **Open Question:**

• Can we efficiently find a solution that satisfies FJR?

Classic Objectives

- k -median: Minimizes the within-cluster sum of distances
	- min $\sum_{j \in [k]} \frac{1}{|C_j|} \sum_{i,i' \in C_j} d(i,i')$
- k -means: Minimizes the within-cluster of the square of the distances

• min
$$
\sum_{j \in [k]} \frac{1}{|C_j|} \sum_{i,i' \in C_j} d^2(i, i')
$$

- \bullet k -center: Minimizes the maximum distance
	- min \widehat{C} : $|C| \leq k$ max $i\overline{\epsilon N}$ $d(i, C(i))$

Proportional Fairness vs Classic Objectives

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or

$$
\frac{1}{|C(i)|-1}\sum\nolimits_{i' \in C(i)} d(i,i') \le \frac{1}{|C_j|}\sum\nolimits_{i' \in C_j} d(i,i')
$$

• Theorem: A envy-free clustering does not always exist

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or

$$
\frac{1}{|C(i)|-1}\sum\nolimits_{i' \in C(i)} d(i,i') \le \frac{1}{|C_j|}\sum\nolimits_{i' \in C_j} d(i,i')
$$

• Theorem: Deciding if there exists an envy-free solution is an NPhard problem

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

• α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or

$$
\frac{1}{|C(i)|-1}\sum\nolimits_{i' \in C(i)} d(i,i') \leq \frac{\alpha}{|C_j|}\sum\nolimits_{i' \in C_j} d(i,i')
$$

• Theorem: An $O(1)$ -envy-free clustering always does (and can be computed efficiently)

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

- α -Envy-freeness: For each $i \in N$ and $j \in [k]$ with $i \notin C_j$, either $C(i) = \{i\}$ or $\ell_i(C(i) \setminus \{i\}) \leq \ell_i(C(j))$
- **Average Loss:** For each $S \subseteq N$, $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- **Maximum Loss:** For each $S \subseteq N$, $\ell_i(S) = \max_{S \subseteq S}$ i ['] ϵ s $d(i, i')$
- **Minimum Loss:** For each $S \subseteq N$, $\ell_i(S) = \min_{S \subseteq S}$ i ['] ϵ s $d(i, i')$

Core vs Envy-Freeness

 $k=2$

Demographic Fairness [Chierichetti et al. 2017]

• Demographic Groups:

- \triangleright There is predefined set of protected groups (e.g. race or gender)
- \triangleright Each individual/data point belongs to one group
- \triangleright Disparate Impact in ML: The impact of a system across protected groups
- \triangleright Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster

Demographic Fairness [Chierichetti et al. 2017]

• Demographic Groups:

- \triangleright There is predefined set of protected groups (e.g. race or gender)
- \triangleright Each individual/data point belongs to one group
- \triangleright Disparate Impact in ML: The impact of a system across protected groups
- \triangleright Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster

$Balanceness$ [Chierichetti et al. 2017]

- Let $G_1, ..., G_t$ be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$
balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_i \cap C_j|}
$$

The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C)$ =min min balance(C_j)

$Balanceness$ [Chierichetti et al. 2017]

- Let $G_1, ..., G_t$ be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$
balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_i \cap C_j|}
$$

The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C)$ =min min balance(C_j)

$Balanceness$ [Chierichetti et al. 2017]

- Let $G_1, ..., G_t$ be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$
balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_i \cap C_j|}
$$

The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C)$ =min min balance(C_j)

Balancedness [Chierichetti et al. 2017]

- Theorem:
	- k-center: 4 \rightarrow approximation with balance $1/t$
	- k-median: $2 + \sqrt{3}$ –approximation with balance 1
	- k-median:t + 2 + $\sqrt{3}$ –approximation with balance $1/t$

Bounded Representation [Bercea et al. 2019]

- Let $G_1, ..., G_t$ be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- For (α, β) bounded representation we require that

 $\alpha \leq |G_i \cap C_j| \leq \beta$, $\forall i \in [t]$ and $\forall j \in [k]$

• Standard objectives such as k-center, k-median and k-means are maximized subject to (α, β) - bounded representation constraints

Socially Fair Clustering [Makarychev et al. 2021]

- Let $G_1, ..., G_t$ be the protected groups (not necessarily disjoint)
- Measure the ℓ_p –loss for each group, i.e. Loss $(G_j) = \sum_{i \in G_j} d(i, C)^p$
- Goal: Minimize the maximum loss over all the t groups
- Theorem: There exists a polynomial time algorithm that finds a $O(e^{O(p)}\frac{\log t}{\log \log n})$ $\frac{\log t}{\log \log t}$)-approximation to the socially fair ℓ_p clustering problem

Fair Range [Hotegni et al. 2023]

- Let $G_1, ..., G_t$ be the protected groups
- Fair Range: $\alpha_j \leq |C \cap G_j| \leq \beta_j$
- Theorem: There exists a polynomial time algorithm that finds constant approximation ℓ_p clustering problem with fair range for any $p \in [1, \inf]$