Fair and
Efficient
Social Decision-Making
CSCI 699
Fairness in Clustering

Evi Micha

CSCI 699 - Evi Micha 1



Clustering
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Clustering in ML/Data Analysis

e Goal:

> Analyze data sets to summarize their characteristics
> Objects in the same group are similar
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Clustering in Economics/OR

e Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)
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Centroid Clustering
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Center-Based Clustering

* Input:
» Set N of n data points
» Set M of m feasible cluster centers
»>Vi,j € NUM :we have d(i,j) (which forms a Metric Space)
e d(i,i)=0,VieENUM
* d(i,j)=4d(,i),Vij ENUM
e d(i,j) <d(i,?)+d(£,j),Vij£€NUM,| Triangle Inequality)
* Output:
» A set C SM of k centers, i.e. C = {cq, ..., Ci}
» Each data point is assigned to its closest cluster center

e C(i) = argmin.ec d(i,c)
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Famous Objective Functions

* k-median: Minimizes the sum of the distances
© min Yien d(i, C())
|C|<k

* k-means: Minimizes the sum of the square of the distances
+ min Tien a2 C(D)
|C|<k

e [k-center: Minimizes the maximum distance
min max d(i,C(i))
|C|<k
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Fairness in Clustering

d Why do we need fairness:

* Many decisions are made at least (partly) using algorithms

»Each point wishes to be as close as possible to some center

* ML applications: Closer to center = better represented by the center

* FL applications: Closer to the center = less travel distance to the facility
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Fairness in Clustering

500
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Fairness in Clustering
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Fairness Through Proportionality

* Proportionally Fair Clustering:

* Every x% of the data points can select x% of the cluster centers
* Every group of n/k agents “deserves” its own cluster center
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Core

e Definition in Committee Selection: W is in the core if

ForallS € Nand TS M

If S| = |T|- n/k (large)

Then, u;(W) = u;(S) forsomei € S

“If a group can afford T, then T should not be a (strict) Pareto
improvement for the group”

V VYV

U Given clustering solution C, C(i) denotes the closest centertoi € N

e Definition in Clustering: C is in the core if

Forall§ € Nand y&S M

If |S| = n/k (large)

Then, d(i,C(i)) < d(i,y) forsomei €S

“If a group can afford a center y, then y should not be a (strict) Pareto
improvement for the group”

V VYV
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Core

Example
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Core in the Line

Theorem: In 1-D, a clustering solution in the core always exists

Informal Proof:

Move from left to right, making every [n/k]-th point a cluster center

* k=3

—0—10—0—00—0—0 00—

—.—.—Q—W
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Core in Trees

* Tree G=(V, E)
e Every vertexis a and a
* Every edge has weight equal to 1

e ST(x) denotes the subtree rooted at node x
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Core in Trees

Tree-Core Algorithm

1. C = @; Root G at an arbitrary node r

2. For level equal to the height of the tree to 1 do
3. For every node x in the current level

4 If ST (x) = - do

5. C=CUx

6. G=G\ST(x)

7. If|G| >0

8. C=CUr

9. ReturnC
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Core in Trees
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Core in Trees
e.g. n=15, k=3
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Core in Trees
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Core in Trees

Theorem: Tree-Core Algorithm returns a clustering solution C in the core

Informal Proof:

Let p(i) be the closest ancestor of i in C
Observation: d(i,p(i)) <d(i,j),Vjé&ST(p())
e Casel: Therearei,i' €S, ST(p(i)) N ST(p(i')) =0Q
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Core in Trees

Theorem: Tree-Core Algorithm returns a clustering solution C in the core

Informal Proof:

Let p(i) be the closest ancestor of i in C

Observation: d(i,p(i)) < d(i,j),V j & ST(p(i))
* Case lll: There are i,i' € S, p(i)=p(i")
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Core in General Metric Spaces

* Theorem: A clustering solution in the core does not always exist

* Proof:

k=3

1/3ﬂ 2/3
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Core in General Metric Spaces

* Theorem: A clustering solution in the core does not always exist

* Proof:

k=3

1/3ﬂ 2/3

CSCI 699 - Evi Micha




a-Core

e Definition in Clustering: C is in the core if

Forall§ € Nand y &S M

If |S| = n/k (large)

Then, d(i,C(i)) < a-d(i,y) forsomei € S

“If a group can afford a center y, then y should not be a (strict) Pareto
improvement for the group”

V VYV

a-Core:
A solution Cis in the a-core, with a = 1 if there is no group of
points S €N with |S|=n/k and y € M such that:

VieS,a-d(i,y) <d(i,C(i))
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Greedy Capture

k=3
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Greedy Capture
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Greedy Capture

k=3
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Greedy Capture

k=3
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Greedy Capture

 B(c,6) denotes the ball centered at ¢ with radius 6

Greedy Capture

1. 6 <0 C <0

2. While N #+ 0do

3. Smoothly increase 6

4. While 3 ¢ € C such that |B(¢c,§) N N| = 1 do

5. C:N <N\ (B(c,6) nNN)

6. While 3 ¢ € M \ C such that |B(c,6) N N| = n/k do
7. C<CUc

8. N < N\ (B(c,§)nN)

9. ReturnC
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Greedy Capture

e Theorem [Chen et al. “19]: Greedy Capture returns a clustering solution in the

(1 + \/f)—core.

* Proof:
 Let C be the solution that Greedy Capture returns

« Suppose for contradiction that there exists S € N, with |S| = %and ceEM\C,
such that Vi € S, (1 +v2) - d(i,c) < d(i, C(i))

_(d(,c") d@i*,c") S
TAG o A o

- -

. . % ' | l C
< min (C;((llfcc)) , a( ;Z;igc’c )) (triangle inequality) ¢ ’ ’
< min (C;((ilfcc)) ) d(i*'c)+;((ii'?)+d(i'c )) (triangle inequality) ™.~

. (d(i*c) d(i,c) . .
< mln( 200 2 + d(i*,c)) (d(i,c’) <d(i* c))
< maox(min(z, 2+1/2)) <1+V2 -
z>
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Core

Theorem [Chen et al. “19]: Greedy Capture returns a clustering solution in the
(1 + \/f)—core for any metric space

Theorem [Chen et al. “19]: For all @ < 2 and all metric spaces, a clustering solution
in the a-core is not guaranteed to exist

Theorem [Chen et al. “19]: When N = M, for all « < 1.5 and all metric spaces, a
clustering solution in the a-core is not guaranteed to exist

Theorem [M and Shah ‘20]: Greedy Capture returns a clustering solution in the 2-
core for Euclidean metric space

Theorem [M and Shah “20]: For Euclidean metric space, for all @ < 1.155, a
clustering solution in the a-core is not guaranteed to exist

Theorem [M and Shah “20]: For Ly and L, , for all @ < 1.4, a clustering solution in
the a-core is not guaranteed to exist

Theorem [M and Shah ‘20]: For Euclidean metric space, checking whether a
clustering solution in the core exists is an NP-hard problem
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Justified Representation

e Definition in Committee Selection: W satisfies JR if

ForallS € N

If [S| = n/k (large) and |N;cs A;| = 1 (cohesive)

Then, [A; N W| = 1forsomei € S

“If a group deserves one candidate and has a commonly approved
candidate, then not every member should get 0 utility”

YV VYV

e Definition in Clustering: C satisfies JR if
» ForallS € N
> If|S| = n/k(large) and | N;esB(i,r) N M| = 1 (cohesive)
o i.e.Vi€S,d(i,c) <rforsomec € M
» Then, |B(i,r)NC| = 1forsomei €S
o i.e.d(i,C(i)) <rforsomei €S
» “If a group deserves one cluster center and has a center that has distance
at most r from each of them, then not every member should have
distance larger than r from all the centers in the clustering ”
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Justified Representation

* Question: What is the relationship between JR and core in
clustering?

@core = JR

2. JR = core

3. JR=core

4. JR # core
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Justified Representation

Theorem [Kellerhals and Peters ‘24]: Greedy Capture returns a clustering solution
that is JR

Proof:

Let C be the solution that Greedy Capture returns

Suppose for contradiction that there exists S € N, with |S| = %and ceEM\C,

such thatVi € S, d(i,c) < r and d(i, C(i)) >

If none of i € S has been disregarded, then |B(c,d)| = n/k andthen cis
included in the committee

Otherwise, some of i € S has been disregarder when it captured from a ball
centered at ¢ with radius at most r *

- - o

// 5 =T \
[ e L
' C . .

CSCI 699 - Evi Micha




Individual Fairness

e Definition: C satisfies Individual Fairness (IF) if
N=M
Letr; = rneiﬂg{ |B(i,7) N N| = n/k}
r
Foralli e N, |B(i,r;) nC| =1
“Each individual expects a center within their proportional neighborhood”

VV VY

 Theorem [Jung et al. “19]: An individually fair clustering solution does not always
exist

* Proof: k =4
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Individual Fairness

 Theorem [Jung et al. “19]: Greedy Capture returns a clustering solution that is
2-IF

* Proof:

 Let C be the solution that Greedy Capture returns

* Suppose for contradiction that somei € N, |[B(i,r;) N C| =0

« If|B(i,r;)| = n/k, theniisincluded in the solution

« Otherwise, some of i’ € B(i,r;)has been disregarded when it captured from a
ball centered at i"" with radius at most r;

* From triangle inequality, d(i,i"") < d(i,i’) +d(i',i") <2 -nr;

%

~.

- -
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Core, JR and IF

Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and
in the 1 + v/2-core .

Theorem [Kellerhals and Peters ‘24]: Any clustering solution that satisfies
JR, it also satisfies 2-IF and is in the 1 + \/2-core .

Theorem [Kellerhals and Peters ‘24]:
O Any clustering solution that satisfies a-IF, it is also in the 2 - a-core
L Any clustering solution that is in the a-core, it also satisfies (1 + a)-IF
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Core, JR and IF vs k-means, k-
median, kK-center
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Non-Centroid Clustering
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Non-Centroid Clustering

* Input:
e Set N of n data points
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Non-Centroid Clustering

* Input:
e Set N of n data points
* Output:
* Partition the individuals into k clusters, C = {Cy, ..., Ci}

A

e Goal: Similar individuals are assigned to the same cluster
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Core in Non-Centroid Clustering

Definition in Committee Selection: W is in the core if
» ForallS € Nand TE M
> If|S| = |T|: n/k (large)
» Then, u;(W) = u;(S) forsomei € S

Definition in Non-Centroid Clustering: C is in the a-core, with a = 1, if
> ForallS ©€ N
> If|S| = n/k (large)
» Then, fl-(C(i)) <a-¥;(S)forsomei €S

Average Loss: Foreach S S N, £,(S) = é Yiresd(i, i)

* Maximum Loss: Foreach S € N, £;(S) = I,nagg d(i,i")
i'e
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Core in Non-Centroid Clustering

 Theorem [Caragiannis et al. 24]:

* Average Cost
* Avariation of Greedy Capture returns a clustering solution in the
O(n/k)-core
* Fora < 1.3, aclustering solution in the a-core is not guaranteed to
exist

* Maximum Cost
e Avariation of Greedy Capture returns a clustering solution in the 2-
core

* Open Questions:
e Average Cost: Does a clustering solution in the O(1)-core always exist?
 Maximum Cost: Does a clustering solution in the core always exist?
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FJR in Non-Centroid Clustering

Definition in Committee Selection: W satisfies FIR if
» ForallSS N,TS Mand?,p €{1,..,k}
> If|S| = |T|-"/, (large) and u;(T) = [, Vi € S (cohesive)
» Then, u;(W) = B forsomei € S

Definition in Non-Centroid Clustering: C satisfies a-FIR, with a = 1, if
» ForallS§ € Nandf ER
> If|S| = n/k (large) and £;(S) < 8, Vi € S (cohesive)
» Then, £;(C(i)) < a- [ forsomei €S

1
N

Average Loss: Foreach S © N, £;(S) = = Yieod(i, i)

e Maximum Loss: For each S € N, ¢;(S) = magg d(i,i’)
i'e
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FJR in Non-Centroid Clustering

Greedy Cohesive Algorithm

1. N'«N

2 j<O0

3. While|N'| =2 n/k

4, jej+1

5 C; « argmingcyr. 1S|2n/k max{’ i(S)
6. N «N'\ S

7. IfIN'| =20

8. jej+1

0. Ci < N’

10. Return {Cl, e G}
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FJR in Non-Centroid Clustering

 Theorem [Caragiannis et al. ‘24]: Greedy Cohesive Algorithms returns a
clustering solution that is FIR

* Proof:

 Let C be the solution that Greedy Capture returns

« Suppose for contradiction that there exists S € N, with |S| = n/k such that
» £;(5) < B, Vi€ S (cohesive)
» £;,(C(i)) > B forallies

* Leti” be the first agent in S that was assigned to a cluster (;

* Then we have that max ti(Cj) = fl-*(Cj) > [
ieC

* But then the algorithm would choose S instead of ;
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FJR in Non-Centroid Clustering

 Theorem [Caragiannis et al. 24]:
* Greedy Cohesive Algorithm returns a clustering solution that satisfies FIR
* Average Cost
* Greedy Capture returns a clustering solution that satisfies 4-FIR
* Maximum Cost
* Greedy Capture returns a clustering solution that satisfies 2-FIR

 Open Question:
* Can we efficiently find a solution that satisfies FIR?
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Classic Objectives

* k-median: Minimizes the within-cluster sum of distances

. . 1 -
min 2jefiq i Ziirec; @ (1)

 k-means: Minimizes the within-cluster of the square of the distances

. 1 27 =1
© min z:J'E[k]ﬁ Zi,i’ecjd (6, 1)

e k-center: Minimizes the maximum distance
e min maxd(i, C(i
in max d (i, C(0))
|C|<k
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Proportional Fairness vs Classic
Objectives
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Envy-Freeness

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022]
[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

* a-Envy-freeness: Foreachi € N and j € [k]| with i € C;, either

C(@i) ={i}or
- i i Y
ICOI - 12i'€C(i)d(l’l )5 1G] Z:i’ede(l’l )

* Theorem: A envy-free clustering does not always exist
* Proof: 51
k=2 71

"

72
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Envy-Freeness

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022]
[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

* a-Envy-freeness: Foreachi € N and j € [k]| with i € C;, either

C(@i) ={i}or
- i i Y
ICOI - 12i'€C(i)d(l’l )5 1G] Z:i’ede(l,l )

* Theorem: Deciding if there exists an envy-free solution is an NP-
hard problem
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Envy-Freeness

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022]
[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

* a-Envy-freeness: For eachi € N and j € [k] with i & Cj, either

C(@i) ={i}or
- i i Y
ICOI - 12i'€C(i)d(l’l )5 1G] Z:i’ede(l,l )

* Theorem: An O(1)-envy-free clustering always does (and can
be computed efficiently)
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Envy-Freeness

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022]
[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

* a-Envy-freeness: Foreachi € N and j € [k]| with i € C;, either
C(i) ={i}or
Li(CON\{ID) =4:(C(H)

1

* Average Loss: Foreach SC N, £;(S) = S|

Diresd(i, i)

¢ Maximum Loss: Foreach S € N, ¢;(S) = r_naéi d(i,i")
i'e

* Minimum Loss: Foreach S € N, £;(S) = I_I,leigld(i, i')
l
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Core vs Envy-Freeness
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Demographic Fairness icuercetietal 2017

 Demographic Groups:
» There is predefined set of protected groups (e.g. race or gender)
» Each individual/data point belongs to one group
» Disparate Impact in ML: The impact of a system across protected
groups
» Disparate Impact in Clustering: The impact on a group is measured
by how many individuals of that group are in each cluster
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Balancedness (cuierichett etal 2017

* LletGy,..., Gt be the protected groups
 LetC = {Cy, ..., C} be a clustering solution
e The balancedness in each cluster Cj is measured as:

. leinc;
balance(C;)= min [Ginc|
i#i'€[t] |GunC;l

* The balancedness of a clustering solution C = {Cy, ..., C¢} is measured as:

balance(C)=min balance((;)
JE[K]
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Balancedness (cuierichett etal 2017

* Theorem:
* k-center: 4 —approximation with balance 1/t

 k-median:2 + /3 —approximation with balance 1
 k-median:t + 2 4+ +/3 —approximation with balance 1/t
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Bounded Representation serces eta. 2019

* LletGy,..., Gt be the protected groups
 LetC = {Cy, ..., C} be a clustering solution
* For (a, f)- bounded representation we require that

a<|G;NnC|<p, Vie[t]andVj € [K]

e Standard objectives such as k-center, k-median and k-means are maximized
subject to (a, f)- bounded representation constraints
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SOCially Fair ClUStering [Makarychev et al. 2021]

* Let Gy, ..., G be the protected groups (not necessarily disjoint)
* Measure the £, —loss for each group, i.e.

Loss(Gj)= ZiEdo(i, C)P
* Goal: Minimize the maximum loss over all the t groups

* Theorem: There exists a polynomial time algorithm that finds a

o(p) _logt : . : . .
O(e Toglog ¢ t) approximation to the socially fair £, clustering problem
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Falr Range [Hotegni et al. 2023]

* LletGy,..., Gt be the protected groups
 FairRange: aj < |C N Gj| < B;

* Theorem: There exists a polynomial time algorithm that finds constant
approximation £, clustering problem with fair range for any p € [1,inf]
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