

#### CSCI 699

# Fairness in Clustering Evi Micha

### Clustering



## Clustering in ML/Data Analysis

#### • Goal:

- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar



## Clustering in ML/Data Analysis

#### • Goal:

- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar

k=3



## Clustering in Economics/OR

• Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)



#### **Centroid Clustering**

### **Center-Based Clustering**

• Input:

 $\succ$  Set N of n data points

 $\succ$  Set *M* of *m* feasible cluster centers

 $\succ \forall i, j \in N \cup M$ : we have d(i, j) (which forms a *Metric Space*)

- $d(i, i) = 0, \forall i \in N \cup M$
- $d(i,j) = d(j,i), \forall i,j \in N \cup M$
- $d(i, j) \le d(i, \ell) + d(\ell, j), \forall i, j, \ell \in N \cup M$ , (Triangle Inequality)

• Output:

≻ A set  $C \subseteq M$  of k centers, i.e.  $C = \{c_1, ..., c_k\}$ 

> Each data point is assigned to its closest cluster center

• 
$$C(i) = argmin_{c \in C} d(i, c)$$

## Famous Objective Functions

- *k*-median: Minimizes the sum of the distances
  - $\min_{\substack{C \subseteq M:\\ |C| \le k}} \sum_{i \in N} d(i, C(i))$
- *k*-means: Minimizes the sum of the square of the distances
  - $\min_{\substack{C \subseteq M:\\ |C| \le k}} \sum_{i \in N} d^2(i, C(i))$
- *k*-center: Minimizes the maximum distance
  - $\min_{\substack{C \subseteq M: \ i \in N \\ |C| \le k}} d(i, C(i))$

#### U Why do we need fairness:

• Many decisions are made at least (partly) using algorithms

> Each point wishes to be as close as possible to some center

- **ML applications:** Closer to center  $\Rightarrow$  better represented by the center
- **FL** applications: Closer to the center  $\Rightarrow$  less travel distance to the facility

k = 3











CSCI 699 - Evi Micha





## Fairness Through Proportionality

- *Proportionally Fair Clustering:* 
  - Every x% of the data points can select x% of the cluster centers
  - Every group of n/k agents "deserves" its own cluster center

### Core

- Definition in Committee Selection: W is in the core if
  - ▶ For all  $S \subseteq N$  and  $T \subseteq M$
  - ▶ If  $|S| \ge |T| \cdot n/k$  (large)
  - ➤ Then,  $u_i(W) \ge u_i(S)$  for some  $i \in S$
  - "If a group can afford T, then T should not be a (strict) Pareto improvement for the group"

□ Given clustering solution *C*, C(i) denotes the closest center to  $i \in N$ 

- **Definition in Clustering:** *C* is in the core if
  - For all  $S \subseteq N$  and  $y \subseteq M$
  - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
  - ➤ Then,  $d(i, C(i)) \le d(i, y)$  for some  $i \in S$
  - "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"











### Core in the Line

- Theorem: In 1-D, a clustering solution in the core always exists
- Informal Proof:
- Move from left to right, making every [n/k]-th point a cluster center

- Tree G=(V, E)
- Every vertex is a *data point* and a *feasible cluster center*
- Every edge has weight equal to 1
- ST(x) denotes the subtree rooted at node x

#### Tree-Core Algorithm

1.  $C = \emptyset$ ; Root G at an arbitrary node r 2. For level equal to the height of the tree to 1 do 3. For every node x in the current level 4.  $If ST(x) \ge \frac{n}{k} do$ 5.  $C = C \cup x$ 6.  $G = G \setminus ST(x)$ 7. If |G| > 08.  $C = C \cup r$ 9. Return C























- Theorem: Tree-Core Algorithm returns a clustering solution *C* in the core
- Informal Proof:
- Let p(i) be the closest ancestor of i in C
- Observation:  $d(i, p(i)) < d(i, j), \forall j \notin ST(p(i))$
- Case I: There are  $i, i' \in S$ ,  $ST(p(i)) \cap ST(p(i')) = \emptyset$



- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let p(i) be the closest ancestor of i in C
- Observation:  $d(i, p(i)) < d(i, j), \forall j \notin ST(p(i))$
- Case II: There are  $i, i' \in S$ ,  $p(i) \in ST(p(i'))$


### Core in Trees

- Theorem: Tree-Core Algorithm returns a clustering solution C in the core
- Informal Proof:
- Let p(i) be the closest ancestor of i in C
- Observation:  $d(i, p(i)) < d(i, j), \forall j \notin ST(p(i))$
- Case III: There are  $i, i' \in S$ , p(i)=p(i')



- Theorem: A clustering solution in the core does not always exist
- Proof:



- Theorem: A clustering solution in the core does not always exist
- Proof:



- Theorem: A clustering solution in the core does not always exist
- Proof:



- Theorem: A clustering solution in the core does not always exist
- Proof:



### $\alpha$ -Core

- **Definition in Clustering:** *C* is in the core if
  - For all  $S \subseteq N$  and  $y \subseteq M$
  - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
  - $\succ$  Then, d(i, C(i)) ≤ α · d(i, y) for some i ∈ S
  - "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

#### *α-Core*:

A solution C is in the  $\alpha$ -core, with  $\alpha \ge 1$  if there is **no** group of points  $S \subseteq N$  with  $|S| \ge n/k$  and  $y \in M$  such that:

 $\forall i \in S, \alpha \cdot d(i, y) < d(i, C(i))$ 





















































•  $B(c, \delta)$  denotes the ball centered at c with radius  $\delta$ 

#### Greedy Capture

- *1.* δ ←0; C ←0
- 2. While  $N \neq 0$  do
- 3. Smoothly increase  $\delta$
- 4. While  $\exists c \in C$  such that  $|B(c, \delta) \cap N| \ge 1$  do
- 5.  $C: N \leftarrow N \setminus (B(c, \delta) \cap N)$
- 6. While  $\exists c \in M \setminus C$  such that  $|B(c, \delta) \cap N| \ge n/k$  do
- 7.  $C \leftarrow C \cup c$
- 8.  $N \leftarrow N \setminus (B(c, \delta) \cap N)$

9. Return C

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the  $(1 + \sqrt{2})$ -core.
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists  $S \subseteq N$ , with  $|S| \ge \frac{n}{k}$  and  $c \in M \setminus C$ , such that  $\forall i \in S, (1 + \sqrt{2}) \cdot d(i, c) < d(i, C(i))$

$$\begin{split} \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c')}{d(i^*,c)}\right) \\ &\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,c')}{d(i^*,c)}\right) \text{ (triangle inequality)} \\ &\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,i)+d(i,c')}{d(i^*,c)}\right) \text{ (triangle inequality)} \\ &\leq \min\left(\frac{d(i^*,c)}{d(i,c)}, 2 + \frac{d(i,c)}{d(i^*,c)}\right) (d(i,c') \leq d(i^*,c)) \\ &\leq \max_{z \geq 0} (\min(z, 2 + 1/z)) \leq 1 + \sqrt{2} \end{split}$$

# Core

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the  $(1 + \sqrt{2})$ -core for any metric space
- Theorem [Chen et al. '19]: For all  $\alpha < 2$  and all metric spaces, a clustering solution in the  $\alpha$ -core is not guaranteed to exist
- Theorem [Chen et al. '19]: When N = M, for all  $\alpha < 1.5$  and all metric spaces, a clustering solution in the  $\alpha$ -core is not guaranteed to exist
- Theorem [M and Shah '20]: Greedy Capture returns a clustering solution in the 2core for Euclidean metric space
- Theorem [M and Shah '20]: For Euclidean metric space, for all  $\alpha < 1.155$ , a clustering solution in the  $\alpha$ -core is not guaranteed to exist
- Theorem [M and Shah '20]: For  $L_1$  and  $L_\infty$ , for all  $\alpha < 1.4$ , a clustering solution in the  $\alpha$ -core is not guaranteed to exist
- Theorem [M and Shah '20]: For Euclidean metric space, checking whether a clustering solution in the core exists is an NP-hard problem

# Justified Representation

- Definition in Committee Selection: W satisfies JR if
  - For all  $S \subseteq N$
  - ▶ If  $|S| \ge n/k$  (large) and  $|\bigcap_{i \in S} A_i| \ge 1$  (cohesive)
  - ▶ Then,  $|A_i \cap W| \ge 1$  for some  $i \in S$
  - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
- Definition in Clustering: C satisfies JR if
  - $\succ \text{ For all } S \subseteq N$
  - ▶ If  $|S| \ge n/k$  (large) and  $|\cap_{i \in S} B(i, r) \cap M| \ge 1$  (cohesive)
    - i.e.  $\forall i \in S, d(i, c) \leq r$  for some  $c \in M$
  - ➤ Then,  $|B(i,r) \cap C| \ge 1$  for some  $i \in S$ 
    - i.e.  $d(i, C(i)) \le r$  for some  $i \in S$
  - "If a group deserves one cluster center and has a center that has distance at most r from each of them, then not every member should have distance larger than r from all the centers in the clustering"

# Justified Representation

• Question: What is the relationship between JR and core in clustering?



- 2. JR  $\Rightarrow$  core
- 3. JR=core
- 4. JR  $\neq$  core

# Justified Representation

- Theorem [Kellerhals and Peters '24]: Greedy Capture returns a clustering solution that is JR
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists  $S \subseteq N$ , with  $|S| \ge \frac{n}{k}$  and  $c \in M \setminus C$ , such that  $\forall i \in S$ ,  $d(i,c) \le r$  and d(i,C(i)) > r
- If none of  $i \in S$  has been disregarded, then  $|B(c, \delta)| \ge n/k$  and then c is included in the committee
- Otherwise, some of  $i \in S$  has been disregarder when it captured from a ball centered at c with radius at most  $r \stackrel{i^*}{\underset{}{}}$



- **Definition:** *C* satisfies Individual Fairness (IF) if
  - $\succ$  N = M
  - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
  - For all  $i \in N$ ,  $|B(i, r_i) \cap C| \ge 1$
  - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- **Definition:** *C* satisfies Individual Fairness (IF) if
  - $\succ$  N = M
  - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
  - For all  $i \in N$ ,  $|B(i, r_i) \cap C| \ge 1$
  - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- **Definition:** *C* satisfies Individual Fairness (IF) if
  - $\succ$  N = M
  - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
  - For all  $i \in N$ ,  $|B(i, r_i) \cap C| \ge 1$
  - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- **Definition:** *C* satisfies Individual Fairness (IF) if
  - $\succ$  N = M
  - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
  - For all  $i \in N$ ,  $|B(i, r_i) \cap C| \ge 1$
  - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- **Definition:** *C* satisfies Individual Fairness (IF) if
  - $\succ$  N = M
  - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
  - For all  $i \in N$ ,  $|B(i, r_i) \cap C| \ge 1$
  - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- Theorem [Jung et al. '19]: Greedy Capture returns a clustering solution that is 2-IF
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that some  $i \in N$ ,  $|B(i, r_i) \cap C| = 0$
- If  $|B(i, r_i)| \ge n/k$ , then *i* is included in the solution
- Otherwise, some of  $i' \in B(i, r_i)$  has been disregarded when it captured from a ball centered at i'' with radius at most  $r_i$
- From triangle inequality,  $d(i, i'') \le d(i, i') + d(i', i'') \le 2 \cdot r_i$



# Core, JR and IF

- Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and in the  $1 + \sqrt{2}$ -core .
- Theorem [Kellerhals and Peters '24]: Any clustering solution that satisfies JR, it also satisfies 2-IF and is in the  $1 + \sqrt{2}$ -core.
- Theorem [Kellerhals and Peters '24]:

 $\Box$  Any clustering solution that satisfies  $\alpha$ -IF, it is also in the  $2 \cdot \alpha$ -core

 $\Box$  Any clustering solution that is in the  $\alpha$ -core, it also satisfies  $(1 + \alpha)$ -IF
#### Core, JR and IF vs k-means, kmedian, k-center

k = 3



#### Non-Centroid Clustering

# Non-Centroid Clustering

- Input:
  - Set N of n data points



# Non-Centroid Clustering

- Input:
  - Set N of n data points
- Output:
  - Partition the individuals into k clusters,  $C = \{C_1, \dots, C_k\}$



• Goal: Similar individuals are assigned to the same cluster

#### Core in Non-Centroid Clustering

- Definition in Committee Selection: W is in the core if
  - ▶ For all  $S \subseteq N$  and  $T \subseteq M$
  - ▶ If  $|S| \ge |T| \cdot n/k$  (large)
  - ➤ Then,  $u_i(W) \ge u_i(S)$  for some  $i \in S$
- Definition in Non-Centroid Clustering: C is in the  $\alpha$ -core, with  $\alpha \ge 1$ , if
  - $\succ$  For all *S* ⊆ *N*
  - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
  - ➤ Then,  $\ell_i(C(i)) \leq \alpha \cdot \ell_i(S)$  for some *i* ∈ S
- Average Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- Maximum Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \max_{i' \in S} d(i, i')$

# Core in Non-Centroid Clustering

- Theorem [Caragiannis et al. '24]:
- Average Cost
  - A variation of Greedy Capture returns a clustering solution in the O(n/k)-core
  - For  $\alpha < 1.3$ , a clustering solution in the  $\alpha$ -core is not guaranteed to exist
  - Maximum Cost
    - A variation of Greedy Capture returns a clustering solution in the 2core

#### • Open Questions:

- Average Cost: Does a clustering solution in the O(1)-core always exist?
- Maximum Cost: Does a clustering solution in the core always exist?

- Definition in Committee Selection: W satisfies FJR if
  For all S ⊆ N, T ⊆ M and ℓ, β ∈ {1, ..., k}
  If |S| ≥ |T| · <sup>n</sup>/<sub>k</sub> (large) and u<sub>i</sub>(T) ≥ β, ∀i ∈ S (cohesive)
  Then, u<sub>i</sub>(W) ≥ β for some i ∈ S
- Definition in Non-Centroid Clustering: C satisfies  $\alpha$ -FJR, with  $\alpha \ge 1$ , if
  - For all  $S \subseteq N$  and  $\beta \in \mathbb{R}$
  - ▶ If  $|S| \ge n/k$  (large) and  $\ell_i(S) \le \beta$ ,  $\forall i \in S$  (cohesive)
  - ➤ Then,  $\ell_i(C(i)) \leq \alpha \cdot \beta$  for some  $i \in S$
- Average Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- Maximum Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \max_{i' \in S} d(i, i')$

Greedy Cohesive Algorithm

1.  $N' \leftarrow N$ 2.  $j \leftarrow 0$ 3. While  $|N'| \ge n/k$ 4.  $j \leftarrow j + 1$ 5.  $C_j \leftarrow argmin_{S \subseteq N':|S| \ge n/k} \max_{i \in S} \ell_i(S)$ 6.  $N' \leftarrow N' \setminus S$ 7. If  $|N'| \ge 0$ 8.  $j \leftarrow j + 1$ 9.  $C_j \leftarrow N'$ 10. Return  $\{C_1, ..., C_j\}$ 

- Theorem [Caragiannis et al. '24]: Greedy Cohesive Algorithms returns a clustering solution that is FJR
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists  $S \subseteq N$ , with  $|S| \ge n/k$  such that
  - $\succ$   $\ell_i(S) ≤ β$ , ∀*i* ∈ *S* (cohesive)
  - $\geq \ell_i(C(i)) > \beta \text{ for all } i \in S$
- Let  $i^*$  be the first agent in S that was assigned to a cluster  $C_i$
- Then we have that  $\max_{i \in C_j} \ell_i(C_j) \ge \ell_{i^*}(C_j) > \beta$
- But then the algorithm would choose S instead of C<sub>j</sub>

- Theorem [Caragiannis et al. '24]:
  - Greedy Cohesive Algorithm returns a clustering solution that satisfies FJR
  - Average Cost
    - Greedy Capture returns a clustering solution that satisfies 4-FJR
  - Maximum Cost
    - Greedy Capture returns a clustering solution that satisfies 2-FJR

#### • Open Question:

• Can we efficiently find a solution that satisfies FJR?

## **Classic Objectives**

- *k*-median: Minimizes the within-cluster sum of distances
  - $\min_{C} \sum_{j \in [k]} \frac{1}{|C_j|} \sum_{i,i' \in C_j} d(i,i')$
- *k*-means: Minimizes the within-cluster of the square of the distances

• 
$$\min_{C} \sum_{j \in [k]} \frac{1}{|C_j|} \sum_{i,i' \in C_j} d^2(i,i')$$

- *k*-center: Minimizes the maximum distance
  - $\min_{\substack{C:\\ i \in N}} \max_{i \in N} d(i, C(i))$  $|C| \le k$

#### Proportional Fairness vs Classic Objectives



[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

•  $\alpha$ -Envy-freeness: For each  $i \in N$  and  $j \in [k]$  with  $i \notin C_j$ , either  $C(i) = \{i\}$  or

$$\frac{1}{|\mathcal{C}(i)| - 1} \sum_{i' \in \mathcal{C}(i)} d(i, i') \leq \frac{1}{|\mathcal{C}_j|} \sum_{i' \in \mathcal{C}_j} d(i, i')$$

- Theorem: A envy-free clustering does not always exist

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

•  $\alpha$ -Envy-freeness: For each  $i \in N$  and  $j \in [k]$  with  $i \notin C_j$ , either  $C(i) = \{i\}$  or

$$\frac{1}{|\mathcal{C}(i)| - 1} \sum_{i' \in \mathcal{C}(i)} d(i, i') \leq \frac{1}{|\mathcal{C}_j|} \sum_{i' \in \mathcal{C}_j} d(i, i')$$

 Theorem: Deciding if there exists an envy-free solution is an NPhard problem

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

•  $\alpha$ -Envy-freeness: For each  $i \in N$  and  $j \in [k]$  with  $i \notin C_j$ , either  $C(i) = \{i\}$  or

$$\frac{1}{|C(i)|-1} \sum_{i' \in C(i)} d(i,i') \leq \frac{\alpha}{|C_j|} \sum_{i' \in C_j} d(i,i')$$

• Theorem: An O(1)-envy-free clustering always does (and can be computed efficiently)

[Ahmadi, Awasthi, Khuller, Kleindessner, Morgenstern, Sukprasert, Vakilian, 2022] [Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang, 2023]

•  $\alpha$ -Envy-freeness: For each  $i \in N$  and  $j \in [k]$  with  $i \notin C_j$ , either  $C(i) = \{i\}$  or  $\ell_i(C(i) \setminus \{i\}) \leq \ell_i(C(j))$ 

- Average Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \frac{1}{|S|} \sum_{i' \in S} d(i, i')$
- Maximum Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \max_{i' \in S} d(i, i')$
- Minimum Loss: For each  $S \subseteq N$ ,  $\ell_i(S) = \min_{i' \in S} d(i, i')$

#### **Core vs Envy-Freeness**

k = 2



# Demographic Fairness [Chierichetti et al. 2017]

#### • Demographic Groups:

- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster



# Demographic Fairness [Chierichetti et al. 2017]

#### • Demographic Groups:

- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster



- Let  $G_1, \ldots, G_t$  be the protected groups
- Let  $C = \{C_1, \dots, C_k\}$  be a clustering solution
- The balancedness in each cluster  $C_i$  is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution  $C = \{C_1, ..., C_t\}$  is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$ 



- Let  $G_1, \ldots, G_t$  be the protected groups
- Let  $C = \{C_1, \dots, C_k\}$  be a clustering solution
- The balancedness in each cluster  $C_i$  is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution  $C = \{C_1, ..., C_t\}$  is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$ 



- Let  $G_1, \ldots, G_t$  be the protected groups
- Let  $C = \{C_1, \dots, C_k\}$  be a clustering solution
- The balancedness in each cluster  $C_i$  is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution  $C = \{C_1, ..., C_t\}$  is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$ 



- Theorem:
  - k-center: 4 approximation with balance 1/t
  - k-median:  $2 + \sqrt{3}$  approximation with balance 1
  - k-median:t + 2 +  $\sqrt{3}$  –approximation with balance 1/t

# Bounded Representation [Bercea et al. 2019]

- Let  $G_1, \ldots, G_t$  be the protected groups
- Let  $C = \{C_1, \dots, C_k\}$  be a clustering solution
- For  $(\alpha, \beta)$  bounded representation we require that

$$\alpha \le |G_i \cap C_j| \le \beta, \quad \forall i \in [t] \text{ and } \forall j \in [k]$$

• Standard objectives such as k-center, k-median and k-means are maximized subject to  $(\alpha, \beta)$ - bounded representation constraints

# Socially Fair Clustering [Makarychev et al. 2021]

- Let  $G_1, \dots, G_t$  be the protected groups (not necessarily disjoint)
- Measure the  $\ell_p$  —loss for each group, i.e. Loss( $G_j$ )=  $\sum_{i \in G_j} d(i, C)^p$
- Goal: Minimize the maximum loss over all the t groups
- Theorem: There exists a polynomial time algorithm that finds a  $O(e^{O(p)} \frac{\log t}{\log\log t})$ -approximation to the socially fair  $\ell_p$  clustering problem

## Fair Range [Hotegni et al. 2023]

- Let  $G_1, \ldots, G_t$  be the protected groups
- Fair Range:  $\alpha_j \leq |C \cap G_j| \leq \beta_j$
- Theorem: There exists a polynomial time algorithm that finds constant approximation  $\ell_p$  clustering problem with fair range for any  $p \in [1, \inf]$