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Clustering	in	ML/Data	Analysis
• Goal:

Ø Analyze data sets to summarize their characteristics
Ø Objects in the same group are similar
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Clustering	in	Economics/OR
• Goal:

Ø Allocate a set of facilities that serve a set of agents (e.g. hospitals)
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Centroid	Clustering

CSCI 699 - Evi Micha 6



Center-Based	Clustering
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• Input:
ØSet 𝑁 of 𝑛 data points
ØSet 𝑀 of 𝑚 feasible cluster centers
Ø∀𝑖, 𝑗 ∈ 𝑁 ∪𝑀	: we have 𝑑 𝑖, 𝑗 	(which forms a Metric Space)

• 𝒅(𝒊, 𝒊) = 𝟎, ∀	𝑖 ∈ 𝑁 ∪𝑀 
• 𝒅 𝒊, 𝒋 = 𝒅(𝒋, 𝒊), ∀	𝑖, 𝑗	 ∈ 𝑁 ∪𝑀
• 𝒅 𝒊, 𝒋 ≤ 𝒅 𝒊, ℓ + 𝒅 ℓ, 𝒋 , ∀	𝑖, 𝑗, ℓ ∈ 𝑁 ∪𝑀, (Triangle Inequality)

• Output:
ØA set 𝐶 ⊆M of 𝑘 centers, i.e. 𝐶 = {𝑐!, … , 𝑐"} 
ØEach data point is assigned to its closest cluster center

• 𝐶(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛!∈# 	𝑑(𝑖, 𝑐)
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Famous	Objective	Functions
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• 𝑘-median: Minimizes the sum of the distances 
• min	

#⊆%:
# '"	

∑)∈+𝑑(𝑖, 𝐶(𝑖))	

• 𝑘-means: Minimizes the sum of the square of the distances
• min	

#⊆%:
# '"	

∑)∈+𝑑,(𝑖, 𝐶(𝑖))	

 
• 𝑘-center: Minimizes the maximum distance 

• min	
#⊆%:
# '"	

max
)∈+

 𝑑(𝑖, 𝐶(𝑖))
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Fairness	in	Clustering	
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q Why do we need fairness:

• Many decisions are made at least (partly) using algorithms

ØEach point wishes to be as close as possible to some center

• ML applications: Closer to center ⇒ better represented by the center

•  FL  applications: Closer to the center ⇒ less travel distance to the facility
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Fairness	in	Clustering	
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Fairness	Through	Proportionality
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• Proportionally Fair Clustering:
• Every x% of the data points can select x% of the cluster centers
• Every group of n/k agents “deserves” its own cluster center
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Core
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• Definition in Committee Selection:	𝑊	is in the core if 
Ø For all 𝑆	 ⊆ 	𝑁 and 𝑇 ⊆ 𝑀 
Ø If 𝑆 ≥ 𝑇 ⋅ 	𝑛/𝑘 (large) 
Ø Then, 𝑢)(𝑊) ≥ 𝑢)(𝑆) for some 𝑖 ∈ 𝑆 
Ø “If a group can afford 𝑇, then 𝑇 should not be a (strict) Pareto 

improvement for the group” 

q Given	clustering	solution	𝐶,	 𝐶(𝑖)	denotes	the	closest	center	to	𝑖 ∈ 	𝑁

• Definition in Clustering: 𝐶 is in the core if 
Ø For all 𝑆	 ⊆ 	𝑁 and 𝑦 ⊆ 𝑀 
Ø If 𝑆 ≥ 	𝑛/𝑘 (large) 
Ø Then,  𝑑 𝑖, 𝐶(𝑖) ≤ 𝑑 𝑖, 𝑦  for some 𝑖 ∈ 𝑆
Ø “If a group can afford a center	y, then 𝑦 should not be a (strict) Pareto 

improvement for the group” 
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Core	in	the	Line
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• Theorem: In 1-D, a clustering solution in the core always exists

• Informal Proof:

• Move from left to right, making every 𝑛/𝑘 -th point a cluster center

• k=3
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Core	in	Trees
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• Tree G=(V, E)

• Every vertex is a data point and a feasible cluster center

• Every edge has weight equal to 1

• ST(x) denotes the subtree rooted at node x
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Core	in	Trees
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Tree-Core Algorithm

1. 𝐶 = ∅; Root G at an arbitrary node r 
2. For level equal to the height of the tree to 1 do
3.  For every node x in the current level 
4.        If 𝑆𝑇(𝑥) ≥ !

"
 do 

5.    𝐶 = 𝐶 ∪ 𝑥
6.    𝐺 = 𝐺 ∖ 𝑆𝑇(𝑥)
7. If 𝐺 > 0
8.  𝐶 = 𝐶 ∪ 𝑟
9. Return 𝐶 
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Core	in	Trees
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e.g.  n=15, k=3
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Core	in	Trees
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• Theorem: Tree-Core Algorithm returns a clustering solution 𝐶 in the core

• Informal Proof:

• Let 𝑝(𝑖)	be the closest ancestor of 𝑖 in 𝐶

• Observation: 𝑑 𝑖, 𝑝 𝑖 < 𝑑 𝑖, 𝑗 , ∀	𝑗 ∉ 𝑆𝑇(𝑝(𝑖))

• Case I: There are 𝑖, 𝑖! ∈ 𝑆	, 𝑆𝑇 𝑝 𝑖 ∩ 𝑆𝑇 𝑝 𝑖! = ∅

𝒊

𝒊′
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Core	in	Trees
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• Theorem: Tree-Core Algorithm returns a clustering solution 𝐶	in the core

• Informal Proof:

• Let 𝑝(𝑖)	be the closest ancestor of 𝑖 in 𝐶

• Observation: 𝑑 𝑖, 𝑝 𝑖 < 𝑑 𝑖, 𝑗 , ∀	𝑗 ∉ 𝑆𝑇(𝑝(𝑖))

• Case II: There are 𝑖, 𝑖! ∈ 𝑆	, 𝑝 𝑖 ∈ 𝑆𝑇 𝑝 𝑖!

𝒊

𝒊′
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Core	in	Trees
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• Theorem: Tree-Core Algorithm returns a clustering solution 𝐶	in the core

𝒊

𝒊′

• Informal Proof:

• Let 𝑝(𝑖)	be the closest ancestor of 𝑖 in 𝐶

• Observation: 𝑑 𝑖, 𝑝 𝑖 < 𝑑 𝑖, 𝑗 , ∀	𝑗 ∉ 𝑆𝑇(𝑝(𝑖))

• Case III: There are 𝑖, 𝑖! ∈ 𝑆	, 𝑝 𝑖 = 𝑝 𝑖′

37



Core	in	General	Metric	Spaces
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• Theorem: A clustering solution in the core does not always exist
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• Theorem: A clustering solution in the core does not always exist
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𝛼-Core
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𝜶-Core: 
A solution C is in the 𝛼-core, with 𝛼 ≥ 1 if there is no group of 
points S ⊆N with |S|≥ 𝑛/𝑘 and 𝑦 ∈ 𝑀 such that:

∀𝑖 ∈ 𝑆, 𝛼 ⋅ 𝑑 𝑖, 𝑦 < 𝑑(𝑖, 𝐶(𝑖)) 

• Definition in Clustering: 𝐶 is in the core if 
Ø For all 𝑆	 ⊆ 	𝑁 and 𝑦 ⊆ 𝑀 
Ø If 𝑆 ≥ 	𝑛/𝑘 (large) 
Ø Then, 𝑑 𝑖, 𝐶(𝑖) ≤ 𝛼 ⋅ 𝑑 𝑖, 𝑦  for some 𝑖 ∈ 𝑆
Ø “If a group can afford a center	y, then 𝑦 should not be a (strict) Pareto 

improvement for the group” 
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Greedy	Capture

CSCI 699 - Evi Micha

𝑘 = 3
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Greedy	Capture
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• 𝐵 𝑐, 𝛿 	 denotes	the	ball	centered	at	𝑐	with	radius	𝛿

Greedy Capture
1. 𝛿	 ←0; 𝐶 ←0
2. While  𝑁 ≠ 0 do
3.        Smoothly increase 𝛿	
4.        While ∃	𝑐 ∈ 𝐶	such that 𝐵 𝑐, 𝛿 ∩ 𝑁 ≥ 1	do
5.                𝐶:𝑁 ← 𝑁 ∖ (𝐵 𝑐, 𝛿 ∩ 𝑁)
6.         While ∃	𝑐 ∈ 𝑀 ∖ 𝐶	such that 𝐵 𝑐, 𝛿 ∩ 𝑁 ≥ 𝑛/𝑘 do
7.               𝐶 ← 𝐶 ∪ 𝑐
8.               𝑁 ← 𝑁 ∖ (𝐵 𝑐, 𝛿 ∩ 𝑁)
9. Return 𝐶
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Greedy	Capture
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• Theorem [Chen et al. ‘19]: Greedy Capture returns a clustering solution in the 
1 + 2 -core.

• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns
• Suppose for contradiction that there exists 𝑆 ⊆ 𝑁,	with 𝑆 ≥ -

"
 and 𝑐 ∈ 𝑀 ∖ 𝐶, 

such that ∀𝑖 ∈ 𝑆, 1 + 2 ⋅ 𝑑 𝑖, 𝑐 < 𝑑(𝑖, 𝐶(𝑖))

min
𝑑 𝑖, 𝑐.

𝑑 𝑖, 𝑐
,
𝑑 𝑖∗, 𝑐.

𝑑 𝑖∗, 𝑐

≤ min 0 ),2!

0 ),2
, 0 )∗,2 30(2,2.)

0 )∗,2
 (triangle inequality)

≤ min 0 ),2!

0 ),2
, 0 )∗,2 30 2,) 30(),2!)

0 )∗,2
	(triangle inequality)

≤ min 0 )∗,2	
0 ),2

, 2 + 0(),2)
0 )∗,2

	(𝑑 𝑖, 𝑐. ≤ 𝑑(𝑖∗, 𝑐))

≤ max
678

(min(𝑧, 2 + 1/𝑧)) ≤ 1 + 2

.𝑐

𝑖∗

𝑆
.
𝑟

.𝑖. 𝑐′
𝛿 =

.
.

.
..
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Core
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• Theorem [Chen et al. ‘19]: Greedy Capture returns a clustering solution in the 
1 + 2 -core for any metric space

• Theorem [Chen et al. ‘19]:  For all 𝛼 < 2	and all metric spaces, a clustering solution 
in the 𝛼-core is not guaranteed to exist

• Theorem [Chen et al. ‘19]:  When 𝑁 = 𝑀, for all 𝛼 < 1.5	and all metric spaces, a 
clustering solution in the 𝛼-core is not guaranteed to exist

• Theorem [M and Shah ‘20]: Greedy Capture returns a clustering solution in the 2-
core for Euclidean metric space

• Theorem [M and Shah ‘20]: For Euclidean metric space, for all 𝛼 < 1.155, a 
clustering solution in the 𝛼-core is not guaranteed to exist

• Theorem [M and Shah ‘20]: For 𝐿$ and 𝐿% , for all 𝛼 < 1.4, a clustering solution in 
the 𝛼-core is not guaranteed to exist

• Theorem [M and Shah ‘20]: For Euclidean metric space, checking whether a 
clustering solution in the core exists is an NP-hard problem 
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Justified	Representation
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• Definition in Committee Selection:	𝑊	satisfies JR if 
Ø For all 𝑆	 ⊆ 	𝑁
Ø If |𝑆| 	≥ 	𝑛/𝑘 (large) and ∩)∈9 𝐴) ≥ 1 (cohesive)
Ø Then, |𝐴) ∩𝑊| ≥ 1 for some 𝑖 ∈ 𝑆
Ø “If a group deserves one candidate and has a commonly approved 

candidate, then not every member should get 0 utility” 

• Definition in Clustering: 𝐶 satisfies JR if 
Ø For all 𝑆	 ⊆ 	𝑁
Ø If |𝑆| 	≥ 	𝑛/𝑘	(large) and | ∩)∈9𝐵 𝑖, 𝑟 ∩ 𝑀| ≥ 1 (cohesive)

o i.e. ∀𝑖 ∈ 𝑆, 𝑑 𝑖, 𝑐 ≤ 𝑟 for some 𝑐 ∈ 𝑀
Ø Then, |𝐵 𝑖, 𝑟 ∩ 𝐶| ≥ 1 for some 𝑖 ∈ 𝑆 

o i.e. 𝑑 𝑖, 𝐶(𝑖) ≤ 𝑟 for some 𝑖 ∈ 𝑆
Ø “If a group deserves one cluster center and has a center that has distance 

at most 𝑟 from each of them, then not every member should have  
distance larger than 𝑟 from all the centers in the clustering ” 
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Justified	Representation
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• Question: What is the relationship between JR and core in 
clustering?

1. core ⇒	JR

2. JR ⇒ core

3. JR=core

4. JR ≠ core
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Justified	Representation
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• Theorem [Kellerhals and Peters ‘24]: Greedy Capture returns a clustering solution 
that is JR

• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns
• Suppose for contradiction that there exists 𝑆 ⊆ 𝑁,	with 𝑆 ≥ -

"
 and 𝑐 ∈ 𝑀 ∖ 𝐶, 

such that ∀𝑖 ∈ 𝑆, 𝑑 𝑖, 𝑐 ≤ 𝑟 and 𝑑 𝑖, 𝐶 𝑖 > 𝑟
• If none of 𝑖 ∈ 𝑆	 has been disregarded,  then 𝐵 𝑐, 𝛿 ≥ 𝑛/𝑘	 and then 𝑐 is 

included  in the committee
• Otherwise, some of 𝑖 ∈ 𝑆	has been disregarder when it captured from a ball 

centered at 𝑐	with radius at most 𝑟

.𝑐

𝑖∗

𝑆
.
𝑟

.𝑖. 𝑐′
𝛿 =

.
.

.
..
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Individual	Fairness

CSCI 699 - Evi Micha

• Definition: 𝐶 satisfies Individual Fairness (IF) if 
Ø 𝑁 = 𝑀
Ø Let 𝑟) = min

:∈ℝ
{ 𝐵 𝑖, 𝑟 ∩ 𝑁 ≥ 𝑛/𝑘}

Ø For all 𝑖 ∈ 𝑁, 𝐵 𝑖, 𝑟) ∩ 𝐶 ≥ 1
Ø “Each individual expects a center within their proportional neighborhood” 

• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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• Definition: 𝐶 satisfies Individual Fairness (IF) if 
Ø 𝑁 = 𝑀
Ø Let 𝑟) = min

:∈ℝ
{ 𝐵 𝑖, 𝑟 ∩ 𝑁 ≥ 𝑛/𝑘}

Ø For all 𝑖 ∈ 𝑁, 𝐵 𝑖, 𝑟) ∩ 𝐶 ≥ 1
Ø “Each individual expects a center within their proportional neighborhood” 

1

1

4

2

3
1

1

1 5

1

8

6

7
1

1

1 9

1

12

10

11
1

1

1
∞	 ∞	

𝑘 = 4

2

2

2

2

2

2

• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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• Definition: 𝐶 satisfies Individual Fairness (IF) if 
Ø 𝑁 = 𝑀
Ø Let 𝑟) = min

:∈ℝ
{ 𝐵 𝑖, 𝑟 ∩ 𝑁 ≥ 𝑛/𝑘}

Ø For all 𝑖 ∈ 𝑁, 𝐵 𝑖, 𝑟) ∩ 𝐶 ≥ 1
Ø “Each individual expects a center within their proportional neighborhood” 
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• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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Individual	Fairness
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• Theorem [Jung et al. ‘19]: Greedy Capture returns a clustering solution that is 
2-IF

• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns
• Suppose for contradiction that some 𝑖 ∈ 𝑁, 𝐵 𝑖, 𝑟) ∩ 𝐶 = 0 
• If 𝐵 𝑖, 𝑟) ≥ 𝑛/𝑘, then 𝑖	is included  in the solution
• Otherwise, some of 𝑖′ ∈ 𝐵 𝑖, 𝑟) has been disregarded when it captured from a 

ball centered at 𝑖′′	with radius at most 𝑟)
• From triangle inequality, 𝑑 𝑖, 𝑖.. ≤ 𝑑 𝑖, 𝑖. + 𝑑 𝑖., 𝑖.. ≤ 2 ⋅ 𝑟)

.𝑖

𝑖∗

≥ 𝑛/𝑘
.

𝑟)
.𝑖′. 𝑖′′

𝛿 =

.
.

.
..
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Core,	JR	and	IF

CSCI 699 - Evi Micha

• Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and 
in the 1 + 2-core .

• Theorem [Kellerhals and Peters ‘24]: Any clustering solution that satisfies 
JR, it also satisfies 2-IF and is in the 1 + 2-core .

• Theorem [Kellerhals and Peters ‘24]: 
q Any clustering solution that satisfies 𝛼-IF, it is also in the 2 ⋅ 𝛼-core
q Any clustering solution that is in the 𝛼-core, it also satisfies (1 + 𝛼)-IF 
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Core,	JR	and	IF	vs	k-means,	k-
median,	k-center

CSCI 699 - Evi Micha

∞	 ∞	𝟏	

𝑘 = 3
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Non-Centroid	Clustering
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Non-Centroid	Clustering
• Input:

• Set 𝑁 of 𝑛 data points

• Output:
• Partition the individuals into 𝑘 clusters,  𝐶 = {𝐶", … , 𝐶#} 
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• Goal: Similar individuals are assigned to the same cluster

Non-Centroid	Clustering
• Input:

• Set 𝑁 of 𝑛 data points

• Output:
• Partition the individuals into 𝑘 clusters,  𝐶 = {𝐶", … , 𝐶#} 

CSCI 699 - Evi Micha 76



Core	in	Non-Centroid	Clustering
• Definition in Committee Selection:	𝑊	is in the core if 

Ø For all 𝑆	 ⊆ 	𝑁 and 𝑇 ⊆ 𝑀 
Ø If 𝑆 ≥ 𝑇 ⋅ 	𝑛/𝑘 (large) 
Ø Then, 𝑢)(𝑊) ≥ 𝑢)(𝑆) for some 𝑖 ∈ 𝑆 

• Definition in Non-Centroid Clustering: 𝐶 is in the 𝛼-core, with 𝛼 ≥ 1, if 
Ø For all 𝑆	 ⊆ 	𝑁
Ø If 𝑆 ≥ 	𝑛/𝑘 (large) 
Ø Then, ℓ) 𝐶 𝑖 ≤ 𝛼 ⋅ ℓ) 𝑆  for some 𝑖 ∈ 𝑆

• Average Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = !
9
	∑)!∈	9𝑑(𝑖, 𝑖′)  

• Maximum Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = max
)!∈9

𝑑(𝑖, 𝑖′)
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Core	in	Non-Centroid	Clustering

• Theorem [Caragiannis et al. ‘24]: 

• Average Cost
• A variation of Greedy Capture returns a clustering solution in the 

O(𝑛/𝑘)-core
• For 𝛼 < 1.3, a clustering solution in the 𝛼-core is not guaranteed to 

exist 

• Maximum Cost
• A variation of Greedy Capture returns a clustering solution in the 2-

core

• Open Questions: 
• Average Cost: Does a clustering solution in the 𝑂(1)-core always exist?
• Maximum Cost: Does a clustering solution in the core always exist?
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FJR	in	Non-Centroid	Clustering
• Definition in Committee Selection:	𝑊 satisfies FJR if

Ø For all 𝑆 ⊆ 𝑁, 𝑇 ⊆ 𝑀 and ℓ, 𝛽 ∈ {1, … , 𝑘}
Ø If 𝑆 ≥ |𝑇| ⋅ ⁄- " (large) and 𝑢)(𝑇) 	≥ 𝛽, ∀𝑖 ∈ 𝑆 (cohesive)
Ø Then, 𝑢) 𝑊 ≥ 𝛽 for some 𝑖 ∈ 𝑆

• Definition in Non-Centroid Clustering: 𝐶 satisfies 𝛼-FJR, with 𝛼 ≥ 1, if 
Ø For all 𝑆	 ⊆ 	𝑁 and 𝛽 ∈ ℝ 
Ø If 𝑆 ≥ 	𝑛/𝑘 (large) and ℓ) 𝑆 ≤ 𝛽, ∀𝑖 ∈ 𝑆 (cohesive) 
Ø Then, ℓ) 𝐶(𝑖) ≤ 𝛼 ⋅ 𝛽 for some 𝑖 ∈ 𝑆

• Average Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = !
9
	∑)!∈	9𝑑(𝑖, 𝑖′)  

• Maximum Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = max
)!∈9

𝑑(𝑖, 𝑖′)

CSCI 699 - Evi Micha 79



FJR	in	Non-Centroid	Clustering

Greedy Cohesive Algorithm

1. 𝑁! ← 𝑁
2. 𝑗 ← 0
3. While	|𝑁!| ≥ 𝑛/𝑘
4. 	 𝑗 ← 𝑗 + 1
5.           𝐶$ ← 𝑎𝑟𝑔𝑚𝑖𝑛%⊆'": % )*/#max,∈%

ℓ,(𝑆)
6. 	 𝑁′ ← 𝑁′ ∖ 	𝑆
7. If		|𝑁!| ≥ 0
8.            𝑗 ← 𝑗 + 1
9.           𝐶$ ← 𝑁′
10. Return {𝐶", … , 𝐶$} 
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FJR	in	Non-Centroid	Clustering
• Theorem [Caragiannis et al. ‘24]: Greedy Cohesive Algorithms returns a 

clustering solution that is FJR
• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns
• Suppose for contradiction that there exists 𝑆 ⊆ 𝑁, with 𝑆 ≥ 𝑛/𝑘 such that

Ø ℓ) 𝑆 ≤ 𝛽, ∀𝑖 ∈ 𝑆 (cohesive) 
Ø  ℓ) 𝐶(𝑖) > 𝛽 for all 𝑖 ∈ 𝑆

•  Let 𝑖∗ be the first agent in S that was assigned to a cluster 𝐶;
• Then we have that max

)∈##
ℓ)(𝐶;) ≥ ℓ)∗ 𝐶; > 𝛽

• But then the algorithm would choose 𝑆 instead of 𝐶;
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FJR	in	Non-Centroid	Clustering

• Theorem [Caragiannis et al. ‘24]: 
• Greedy Cohesive Algorithm returns a clustering solution that satisfies FJR
• Average Cost

• Greedy Capture returns a clustering solution that satisfies 4-FJR
• Maximum Cost

• Greedy Capture returns a clustering solution that satisfies 2-FJR

• Open Question:
• Can we efficiently find a solution that satisfies FJR?

CSCI 699 - Evi Micha 82



Classic	Objectives
• 𝑘-median: Minimizes the within-cluster sum of distances

• min	
#

∑;∈["]
!
|##|
	∑),)!∈## 𝑑	(𝑖, 𝑖′)	

• 𝑘-means: Minimizes the within-cluster of the square of the distances
• min	

#
∑;∈["]

!
|##|
	∑),)!∈## 𝑑

,(𝑖, 𝑖′)	

 
• 𝑘-center: Minimizes the maximum distance 

• min	
#:
# '"	

max
)∈+

 𝑑(𝑖, 𝐶(𝑖))
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Proportional	Fairness	vs	Classic	
Objectives

∞	 ∞	𝟏	

𝑘 = 3
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• 𝛼-Envy-freeness: For each 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑘] with 𝑖 ∉ 𝐶', either 
𝐶 𝑖 = {𝑖} or

1
𝐶 𝑖 − 1

v
)!∈# )

𝑑(𝑖, 𝑖.) ≤
1
|𝐶;|

v
)!∈##

𝑑(𝑖, 𝑖.)

• Theorem: A envy-free clustering does not always exist
• Proof:
          k=2

Envy-Freeness
[Ahmadi, Awasthi, Khuller, Kleindessner,  Morgenstern, Sukprasert, Vakilian, 2022]

[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang,  2023]
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• 𝛼-Envy-freeness: For each 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑘] with 𝑖 ∉ 𝐶', either 
𝐶 𝑖 = {𝑖} or

1
𝐶 𝑖 − 1

v
)!∈# )

𝑑(𝑖, 𝑖.) ≤
1
|𝐶;|

v
)!∈##

𝑑(𝑖, 𝑖.)

• Theorem: Deciding if there exists an envy-free solution is an NP-
hard problem 

Envy-Freeness
[Ahmadi, Awasthi, Khuller, Kleindessner,  Morgenstern, Sukprasert, Vakilian, 2022]

[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang,  2023]
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• 𝛼-Envy-freeness: For each 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑘] with 𝑖 ∉ 𝐶', either 
𝐶 𝑖 = {𝑖} or

1
𝐶 𝑖 − 1

v
)!∈# )

𝑑(𝑖, 𝑖.) ≤
𝛼
|𝐶;|

v
)!∈##

𝑑(𝑖, 𝑖.)

• Theorem: An 𝑂(1)-envy-free clustering always does (and can 
be computed efficiently)

Envy-Freeness
[Ahmadi, Awasthi, Khuller, Kleindessner,  Morgenstern, Sukprasert, Vakilian, 2022]

[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang,  2023]

CSCI 699 - Evi Micha 87



• 𝛼-Envy-freeness: For each 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑘] with 𝑖 ∉ 𝐶', either 
𝐶 𝑖 = {𝑖} or

ℓ)(𝐶 𝑖 ∖ {𝑖}) 	≤ ℓ)(𝐶 𝑗 )

• Average Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = !
9
	∑)!∈	9𝑑(𝑖, 𝑖′)  

• Maximum Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = max
)!∈9

𝑑(𝑖, 𝑖′)

• Minimum Loss: For each  𝑆 ⊆ 𝑁,  ℓ) 𝑆 = min
)!∈9

𝑑(𝑖, 𝑖′)

Envy-Freeness
[Ahmadi, Awasthi, Khuller, Kleindessner,  Morgenstern, Sukprasert, Vakilian, 2022]

[Aamand, Chen, Liu, Silwal, Sukprasert, Vakilian, Zhang,  2023]
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𝑘 = 2

100
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Core vs Envy-Freeness

1000000𝜀	
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Demographic	Fairness	[Chierichetti	et	al.	2017]

CSCI 699 - Evi Micha

• Demographic Groups: 
Ø There is predefined set of protected groups (e.g. race or gender)
Ø Each individual/data point belongs to one group
Ø Disparate Impact in ML: The impact of a system across protected 

groups
Ø Disparate Impact in Clustering: The impact on a group is measured 

by how many individuals of that group are in each cluster
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• Demographic Groups: 
Ø There is predefined set of protected groups (e.g. race or gender)
Ø Each individual/data point belongs to one group
Ø Disparate Impact in ML: The impact of a system across protected 

groups
Ø Disparate Impact in Clustering: The impact on a group is measured 

by how many individuals of that group are in each cluster
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Balancedness	[Chierichetti	et	al.	2017]

CSCI 699 - Evi Micha

• Let 𝐺!, … , 𝐺? be the protected groups
• Let 𝐶 = {𝐶!, … , 𝐶"} be a clustering solution
• The balancedness in each cluster 𝐶; is measured as:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶;)= min
)@)!∈[?]

A$∩##
A$!∩##

• The balancedness of a clustering solution 𝐶 = {𝐶!, … , 𝐶?}  is measured as:

 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶)=min
;∈["]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶;)
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Balancedness	[Chierichetti	et	al.	2017]
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• Let 𝐺!, … , 𝐺? be the protected groups
• Let 𝐶 = {𝐶!, … , 𝐶"} be a clustering solution
• The balancedness in each cluster 𝐶; is measured as:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶;)= min
)@)!∈[?]

A$∩##
A$!∩##

• The balancedness of a clustering solution 𝐶 = {𝐶!, … , 𝐶?}  is measured as:

 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶)=min
;∈["]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶;)
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Balancedness	[Chierichetti	et	al.	2017]

CSCI 699 - Evi Micha

• Theorem:
• k-center: 4 −approximation with balance 1/𝑡
• k-median:2 + 3 −approximation with  balance 1
• k-median:t + 2 + 3 −approximation with  balance 1/𝑡

95



Bounded	Representation	[Bercea	et	al.	2019]

CSCI 699 - Evi Micha

• Let 𝐺!, … , 𝐺? be the protected groups
• Let 𝐶 = {𝐶!, … , 𝐶"} be a clustering solution
• For (𝛼, 𝛽)- bounded representation we require that

𝛼 ≤ 𝐺) ∩ 𝐶; ≤ 𝛽,	 ∀𝑖 ∈ [𝑡]	and ∀𝑗 ∈ [𝑘]	

• Standard objectives such as k-center, k-median and k-means are maximized 
subject to (𝛼, 𝛽)- bounded representation constraints
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Socially	Fair	Clustering	[Makarychev	et	al.	2021]

CSCI 699 - Evi Micha

• Let 𝐺!, … , 𝐺? be the protected groups (not necessarily disjoint)
• Measure the ℓC −loss for each group, i.e.

Loss(𝐺;)= ∑)∈A# 𝑑 𝑖, 𝐶 C

• Goal: Minimize the maximum loss over all the 𝑡 groups

• Theorem: There exists a polynomial time algorithm that finds a 
𝑂(𝑒D C EFG ?

EFGEFG ?)-approximation to the socially fair ℓC clustering problem
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Fair	Range	[Hotegni	et	al.	2023]

CSCI 699 - Evi Micha

• Let 𝐺!, … , 𝐺? be the protected groups 

• Fair Range: 𝛼; ≤ 𝐶 ∩ 𝐺; ≤ 𝛽;

• Theorem: There exists a  polynomial time algorithm that finds constant 
approximation ℓC clustering problem with fair range for any 𝑝 ∈ [1, in𝑓]
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