

CSCI 699

Voting: Axioms III

Evi Micha

Credit for the slides and most of visuals: Nisarg Shah and Ariel D. Procaccia

Randomized Voting Rules

- Input: preference profile
- Output: *distribution* over alternatives
	- \geq To think about successful manipulations, we need numerical utilities
- u_i is consistent with \succ_i if $a >_{i} b \Rightarrow u_{i}(a) \geq u_{i}(b)$
- Strategyproofness:
	- \triangleright For all i , $\overrightarrow{>}_{-i}$, \succ_i , \succ'_i , and u_i consistent with \succ_i

$$
\mathbb{E}\left[u_i\left(f(\vec{\gt})\right)\right] \geq \mathbb{E}\left[u_i\left(f(\vec{\gt}_{-i},\gt_i')\right)\right]
$$

Randomized Voting Rules

- A (deterministic) voting rule is
	- \triangleright unilateral if it only depends on one voter
	- \triangleright duple if its range contains at most two alternatives
- A probability mixture f over rules $f_1, ..., f_k$ is a rule given by some probability distribution $(\alpha_1, ..., \alpha_k)$ s.t. on every profile \geq , f returns $f_i(\geq)$ w.p. α_i .
- Example:
	- \triangleright With probability 0.5, output the top alternative of a randomly chosen voter
	- \triangleright With the remaining probability 0.5, output the winner of the pairwise election between a^* and b^*
- Theorem [Gibbard 77]
	- \triangleright A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

Approximating Voting Rules

- Idea: Can we use strategyproof voting rules to approximate popular voting rules?
- Fix a rule (e.g., Borda) with a clear notion of score denoted $\mathsf{sc}(\overrightarrow{>} , a)$
- A randomized voting rule f is a c-approximation to sc if for every profile ≻

$$
\frac{\mathbb{E}[\text{sc}\left(\overrightarrow{S}, f(\overrightarrow{S})\right)}{\max_{a} \text{sc}(\overrightarrow{S}, a)} \geq c
$$

Approximating Borda

- Question: How well does choosing a random alternative approximate Borda?
	- 1. $\Theta(1/n)$
	- 2. $\Theta(1/m)$
	- 3. $\Theta(1/\sqrt{m})$
	- $\Theta(1)$
- Theorem [Procaccia 10]:

No strategyproof voting rule gives $\frac{1}{2} + \omega \left(\frac{1}{2}\right)$ \overline{m} approximation to Borda.

Quantitative GS Theorem

- Regarding the use of NP-hardness to circumvent GS
	- \triangleright NP-hardness is hardness in the worst case
	- \triangleright What happens in the average case?
- Theorem [Mossel-Racz '12]:
	- \triangleright For every voting rule that is at least ϵ -far from being a dictatorship or having range of size 2…
	- \triangleright ...the probability that a uniformly random profile admits a manipulation is at least $p(n,m,1/\epsilon)$ for some polynomial p

Coalitional Manipulations

- What if multiple voters collude to manipulate?
	- \geq The following result applies to a wide family of voting rules called "generalized scoring rules".
- Theorem [Conitzer-Xia '08]:

Powerful = can manipulate with high probability

Interesting Tidbit

- Detecting a manipulable profile versus finding a beneficial manipulation
- Theorem [Hemaspaandra, Hemaspaandra, Menton '12] If integer factoring is NP-hard, then there exists a generalized scoring rule for which:
	- \triangleright We can efficiently check if there exists a beneficial manipulation.
	- \triangleright But finding such a manipulation is NP-hard.

- Axiom:
	- \triangleright A requirement that the voting rule must behave in a certain way
- Goal:
	- \triangleright Define a set of reasonable axioms, and search for voting rules that satisfy them together
	- \triangleright Ultimate hope: a unique voting rule satisfies the set of axioms simultaneously!
	- \triangleright What often happens: no voting rule satisfies the axioms together \odot

We have already seen axioms!

- Condorcet consistency
- Majority consistency
- Strategyproofness
- Ontoness
- Non-dictatorship
- Strong monotonicity
- Pareto optimality

- Some axioms are weak and satisfied by all natural rules
	- \triangleright Unanimity:
		- \circ If all voters have the same top choice, that alternative is the winner. $(top(\succ_i) = a \,\forall i \in N) \Rightarrow f(\vec{\succ}) = a$
	- \triangleright Q: How does this compare to Pareto optimality?
	- \triangleright Pareto optimality is weak but still violated by natural voting methods like voting trees

• Anonymity:

- \triangleright Permuting the votes does not change the winner
- \triangleright In other words, voter identities don't matter
- \triangleright Example: these two profiles must have the same winner: {voter 1: $a > b > c$, voter 2: $b > c > a$ } {voter 1: $b > c > a$, voter 2: $a > b > c$ }

• Neutrality:

- \triangleright Permuting alternative names just permutes the winner accordingly
- \triangleright Example:
	- \circ Say a wins on {voter 1: $a > b > c$, voter 2: $b > c > a$ }
	- \circ We permute all names: $a \rightarrow b$, $b \rightarrow c$, and $c \rightarrow a$
	- \circ New profile: {voter 1: $b > c > a$, voter 2: $c > a > b$ }
	- \circ Then, the new winner must be b

- Neutrality is tricky for deterministic rules
	- \triangleright Incompatible with anonymity
		- \circ Consider the profile {voter 1: $a > b$, voter 2: $b > a$ }
		- \circ Without loss of generality, say α wins
		- Imagine a different profile: {voter 1: $b > a$, voter 2: $a > b$ }
			- Neutrality \Rightarrow we exchanged $a \leftrightarrow b$, so winner must be b
			- Anonymity \Rightarrow we exchanged the votes, so winner must be α
- We usually only require neutrality for...
	- \triangleright Randomized rules: E.g., a rule could satisfy both by choosing a and b as the winner with probability $\frac{1}{2}$ each, on both profiles
	- \triangleright Deterministic rules that return a set of tied winners: E.g., a rule could return $\{a, b\}$ as tied winners on both profiles.

• Consistency: If a is the winner on two profiles, it must be the winner on their union.

$$
f(\vec{\succ}_1) = a \land f(\vec{\succ}_2) = a \Rightarrow f(\vec{\succ}_1 + \vec{\succ}_2) = a
$$

> Example: $\overrightarrow{>}_1 = \{a > b > c\}, \overrightarrow{>}_2 = \{a > c > b, b > c > a\}$

 \triangleright Then, $\overrightarrow{>}_1 + \overrightarrow{>}_2 = \{a \succ b \succ c, a \succ c \succ b, b \succ c \succ a\}$

- Theorem [Young '75]:
	- \triangleright Subject to mild requirements, a voting rule is consistent if and only if it is a positional scoring rule!

- Weak monotonicity: If a is the winner, and a is "pushed up" in some votes, a remains the winner.
	- $\Rightarrow f(\overrightarrow{>}) = a \Rightarrow f(\overrightarrow{>}') = a$, where $\circ b >_i c \Leftrightarrow b >_i' c, \forall i \in N$, $b, c \in A \setminus \{a\}$ (Order of others preserved) $\{a \mid a \in (a \land b \Rightarrow a \land b \land b \in A) \}$ (*a* only improves)
- Contrast with strong monotonicity
	- > SM requires $f(\overrightarrow{>}') = a$ even if $\overrightarrow{>}'$ only satisfies the 2nd condition
	- ^Ø Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]

- Weak monotonicity is satisfied by most voting rules
	- \triangleright Popular exceptions: STV, plurality with runoff
- But violation of weak monotonicity helps STV be hard to manipulate
	- ^Ø Theorem [Conitzer-Sandholm '06]:

"Every weakly monotonic voting rule is easy to manipulate on average."

• STV violates weak monotonicity

- First c , then b eliminated
- Winner: a
- First b , then a eliminated
- Winner: c

- Arrow's Impossibility Theorem
	- \triangleright Applies to social welfare functions (profile \rightarrow ranking)
	- \triangleright Independence of Irrelevant Alternatives (IIA): If the preferences of all voters between a and b are unchanged, the social preference between a and b should not change
	- \triangleright Pareto optimality: If all prefer a to b, then the social preference should be $a > b$
	- ^Ø Theorem: IIA + Pareto optimality ⇒ dictatorship

- Polynomial-time computability
	- \triangleright Can be thought of as a desirable axiom
	- \triangleright Two popular rules which attempt to make the pairwise comparison graph acyclic by inverting edges are NP-hard to compute: \circ Kemeny's rule: invert edges with minimum total weight
		- \circ Slater's rule: invert minimum number of edges
	- \triangleright Both rules can be implemented by straightforward integer linear programs
		- \circ For small instances (say, up to 20 alternatives), NP-hardness isn't a practical concern.

