

CSCI 699

Voting: Axioms II

Evi Micha

Credit for the slides and most of visuals: Nisarg Shah and Ariel D. Procaccia

Which rule to use?

- We just introduced infinitely many rules
 - > (Recall positional scoring rules...)
- How do we know which is the "right" rule to use?
 - Various approaches
 - > Axiomatic, statistical, utilitarian, ...
- How do we ensure good incentives without using money?
 > Bad luck!

Incentives

- Can a voting rule incentivize voters to truthfully report their preferences?
- Strategyproofness
 - > A voting rule is strategyproof if a voter cannot submit a false preference and get a more preferred alternative (under her true preference) elected, irrespective of the preferences of other voters
 - > Formally, a voting rule f is strategyproof if for every preference profile $\overrightarrow{\succ}$, voter i, and preference \succ'_i , we have

$$f(\overrightarrow{\succ}) \geq_i f(\overrightarrow{\succ}_{-i},\succ_i')$$

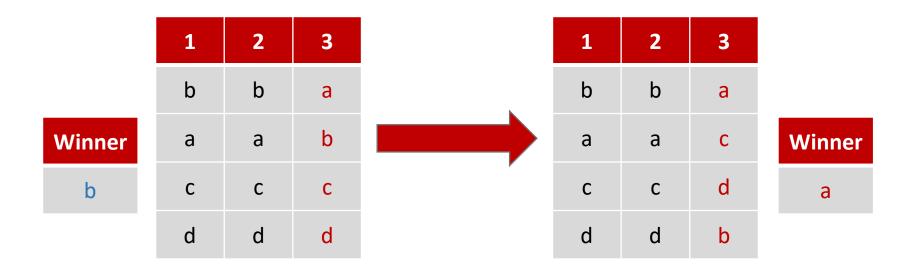
▶ Question: What is the relation between $f(\overrightarrow{\succ})$ and $f(\overrightarrow{\succ}_{-i}, \succ'_i)$ according to \geq'_i ?

Strategyproofness

• Question: Is Borda Count strategyproof?

• Example:

- > In the true profile, b wins
- \succ Voter 3 can make a win by pushing b to the end



Borda's Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude

Strategyproofness

- None of the rules we saw are strategyproof!
- Are there any strategyproof rules?

> Sure

- Dictatorial voting rule
 - The winner is always the most preferred alternative of voter i
- Constant voting rule
 - The winner is always the same
- Not satisfactory (for most cases)

Dictatorship

Constant function

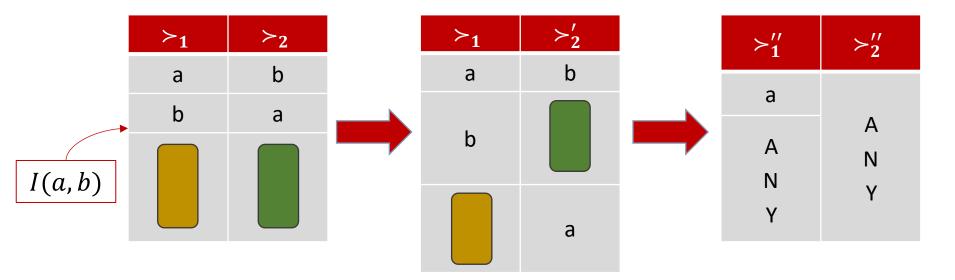
Three Properties

- Strategyproof: Already defined. No voter has an incentive to misreport.
- Onto: Every alternative can win under some preference profile.
- Nondictatorial: There is no voter *i* such that $f(\overrightarrow{\succ})$ is always the alternative most preferred by voter *i*.

- Theorem: For $m \ge 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously \otimes
- **Proof:** We will prove this for n = 2 voters.
 - > Step 1: Show that SP \Rightarrow "strong monotonicity" [Assignment]
 - ▶ Strong Monotonicity (SM): If $f(\overrightarrow{\succ}) = a$, and $\overrightarrow{\succ}'$ is such that $\forall i \in N, x \in A$: $a \succ_i x \Rightarrow a \succ'_i x$, then $f(\overrightarrow{\succ}') = a$.
 - If, for each *i*, the set of alternatives defeated by *a* in \succ_i' is a superset of what it defeats in \succ_i , then if it was winning under $\overrightarrow{\succ}$, it should also win under $\overrightarrow{\succ}'$

- Theorem: For $m \ge 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously \mathfrak{S}
- **Proof:** We will prove this for n = 2 voters.
 - > Step 2: Show that SP + onto \Rightarrow "Pareto optimality" [Assignment]
 - ▶ Pareto Optimality (PO): If $a \succ_i b$ for all $i \in N$, then $f(\overrightarrow{\succ}) \neq b$.
 - If there is a different alternative *a* that *everyone* prefers to *b*, then
 b should not be the winner.

Proof for n=2: Consider problem instance I(a, b)



$$f(\succ_1,\succ_2) \in \{a,b\}$$

> PO

Say
$$f(\succ_1, \succ_2) = a$$

$$f(\succ_1,\succ_2') = a$$

• PO:
$$f(\succ_1, \succ'_2) \in \{a, b\}$$

• SP: $f(\succ_1, \succ'_2) \neq b$

$$f(\succ'') = a$$

> SM

• Proof for n=2:

If f outputs a on instance I(a, b), voter 1 can get a elected whenever she puts a first.

 \circ In other words, voter 1 becomes dictatorial for a.

 \circ Denote this property by the notation D(1, a).

> If f outputs b on I(a, b)

 \circ Voter 2 becomes dictatorial for *b*, i.e., we have D(2, b).

- For every (a, b), f either satisfies the property D(1, a) or the property D(2, b).
 - > We're not done! (Why?)

• Proof for n=2:

- > Fix a^* and b^* . Suppose $D(1, a^*)$ holds.
- > Then, we show that voter 1 is a dictator.

• That is, D(1, c) also holds for every $c \neq a^*$

- ≻ Take $c \neq a^*$. Because $|A| \geq 3$, there exists $d \in A \setminus \{a^*, c\}$
- > Consider I(c, d); f sastisifies either D(1, c) or D(2, d)
- > But D(2, d) is incompatible with $D(1, a^*)$

 \circ Who would win if voter 1 puts a^* first and voter 2 puts d first?

> Thus, we have D(1, c), as required

Circumventing G-S

- Restricted preferences (later in the course)
 - Not allowing all possible preference profiles
 - > Example: single-peaked preferences
 - Alternatives are on a line (say 1D political spectrum)
 - $\,\circ\,$ Voters are also on the same line
 - $\,\circ\,$ Voters prefer alternatives that are closer to them

Circumventing G-S

- Randomization (later in the course)
- Equilibrium analysis
 - How will strategic voters act under a voting rule that is not strategyproof?
 - Will they reach an "equilibrium" where each voter is happy with the (possibly false) preference she is submitting?
- Restricting information required for manipulation
 - Can voters successfully manipulate if they don't know the votes of the other voters?

Circumventing G-S

Computational complexity

- > We need to use a rule that is the rule is manipulable
- Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC&W 1989]
- > NP-hardness can be a good thing!
- f-MANIPULATION problem (for a given voting rule f)
 - Input: Manipulator *i*, alternative *p*, votes of other voters (nonmanipulators)
 - Output: Can the manipulator cast a vote that makes p uniquely win under f?

Example: Borda

• Can voter 3 make *a* win?

> Yes

1	2	3
b	b	
а	а	
С	С	
d	d	

A Greedy Algorithm

• Goal:

 \succ The manipulator wants to make alternative p win uniquely

• Algorithm:

- \succ Rank p in the first place
- > While there are unranked alternatives:
 - \circ If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
 - Otherwise, return false.

Example: Borda

1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а		а	\times	b	а	а	С
С	С		C	с		С	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	\times	С	а	а	С	а	а	С
С	c	b	С	С	d	С	С	d
d	d		d	d		d	d	b

1	2	3	4	5
а	b	е	е	а
b	а	С	С	
С	d	b	b	
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	-	2
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	b

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

When does this work?

• Theorem [Bartholdi et al., SCW 89]:

Fix voter *i* and votes of other voters. Let *f* be a rule for which \exists function $s(\succ_i, x)$ such that:

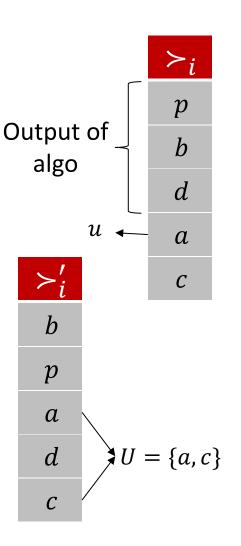
- 1. For every \succ_i , f chooses candidates maximizing $s(\succ_i, \cdot)$
- 2. $\{y : x \succ_i y\} \subseteq \{y : x \succ'_i y\} \Rightarrow s(\succ_i, x) \le s(\succ'_i, x)$

Then the greedy algorithm solves f-MANIPULATION correctly.

• Question: What is the function *s* for the plurality rule?

Proof of the Theorem

- Suppose for contradiction:
 - > Algo creates a partial ranking \succ_i and then fails, i.e., every next choice prevents p from winning
 - > But \succ'_i could have made p uniquely win
- $U \leftarrow$ alternatives not ranked in \succ_i
- $u \leftarrow \text{highest ranked alternative in } U$ according to \succ'_i
- Complete \succ_i by adding u next, and then other alternatives arbitrarily



Proof of the Theorem

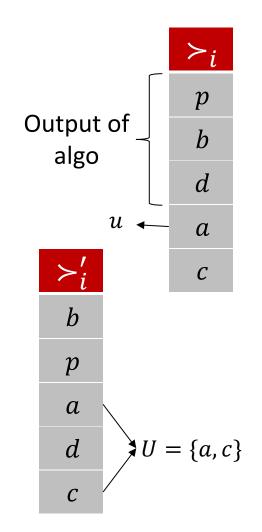
•
$$s(\succ_i, p) \ge s(\succ'_i, p)$$

> Property 2

•
$$s(\succ'_i, u) \ge s(\succ_i, u)$$

> Property 2

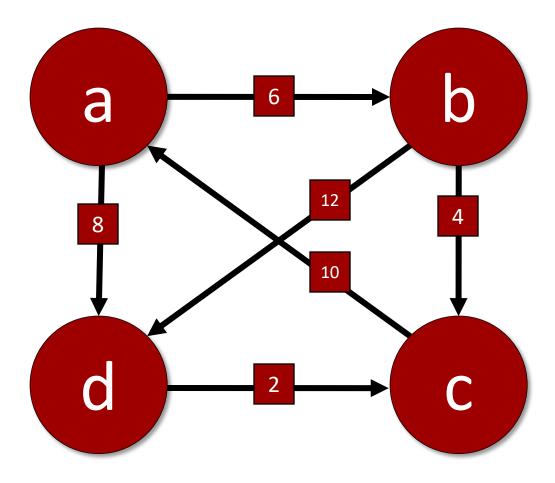
- Conclusion
 - Putting u in the next position wouldn't have prevented p from winning
 - So the algorithm should have continued

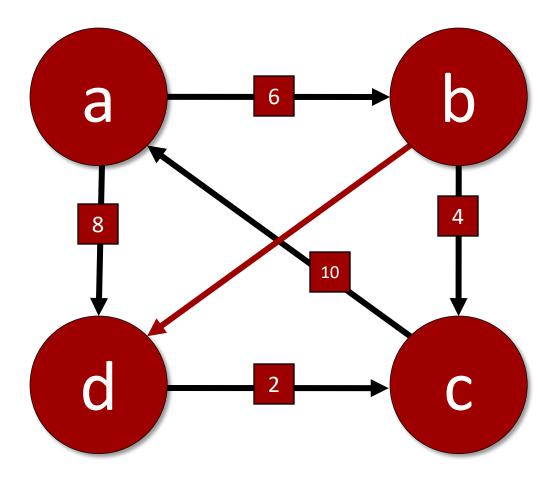


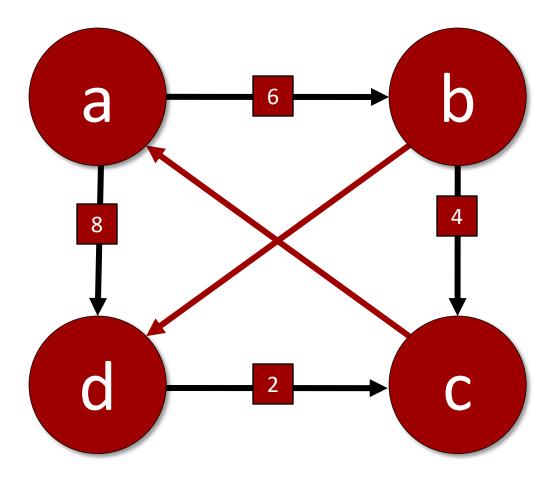
Hard-to-Manipulate Rules

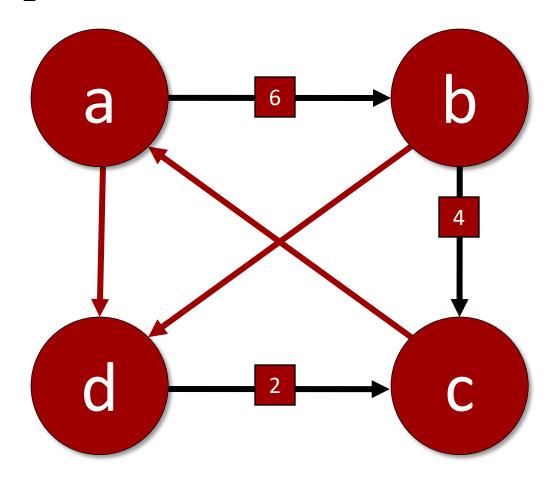
• Natural rules

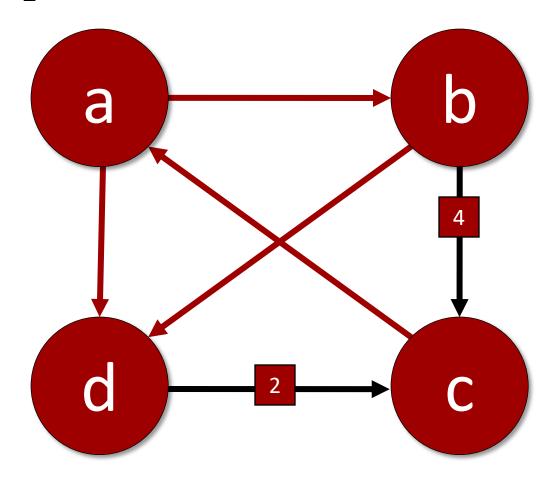
- Copeland with second-order tie breaking [Bartholdi et al. SCW 89]
 - In case of a tie, choose the alternative for which the sum of Copeland scores of defeated alternatives is *the largest*
- STV [Bartholdi & Orlin, SCW 91]
- Ranked Pairs [Xia et al., IJCAI 09]
 - Iteratively lock in pairwise comparisons by their margin of victory (largest first), ignoring any comparison that would form cycles.
 - \circ Winner is the top ranked candidate in the final order.
- Can also "tweak" easy to manipulate voting rules [Conitzer & Sandholm, IJCAI 03]

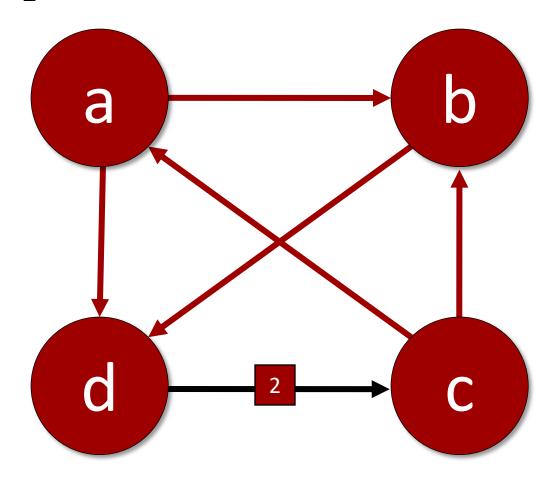


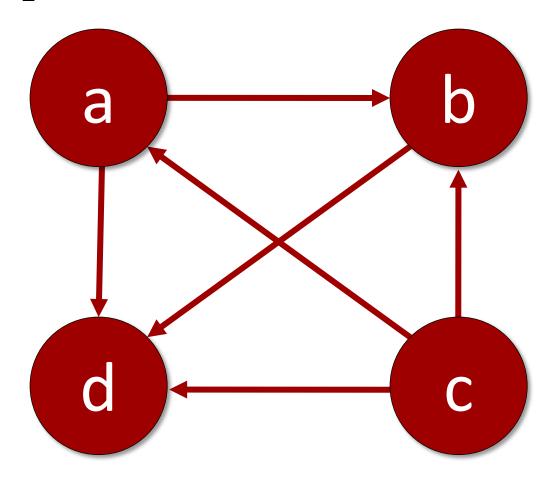












Randomized Voting Rules

- Input: preference profile
- Output: distribution over alternatives
 - > To think about successful manipulations, we need numerical utilities
- u_i is consistent with \succ_i if $a \succ_i b \Rightarrow u_i(a) \ge u_i(b)$
- Strategyproofness:
 - > For all $i, \overrightarrow{\succ}_{-i}, \succ_i, \succ_i'$, and u_i consistent with \succ_i

$$\mathbb{E}\left[u_{i}\left(f\left(\overrightarrow{\succ}\right)\right)\right] \geq \mathbb{E}\left[u_{i}\left(f\left(\overrightarrow{\succ}_{-i},\succ_{i}'\right)\right)\right]$$

where \succ'_i is consistent with u_i .

Randomized Voting Rules

- A (deterministic) voting rule is
 - unilateral if it only depends on one voter
 - duple if its range contains at most two alternatives

• Question:

- > What is a unilateral rule that is not strategyproof?
- > What is a duple rule that is not strategyproof?

Randomized Voting Rules

- A probability mixture f over rules $f_1, ..., f_k$ is a rule given by some probability distribution $(\alpha_1, ..., \alpha_k)$ s.t. on every profile $\overrightarrow{\succ}$, f returns $f_j(\overrightarrow{\succ})$ w.p. α_j .
- Example:
 - With probability 0.5, output the top alternative of a randomly chosen voter
 - > With the remaining probability 0.5, output the winner of the pairwise election between a^* and b^*
- Theorem [Gibbard 77]
 - A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

Approximating Voting Rules

- Idea: Can we use strategyproof voting rules to approximate popular voting rules?
- Fix a rule (e.g., Borda) with a clear notion of score denoted $sc(\overrightarrow{>}, a)$
- A randomized voting rule *f* is a *c*-approximation to sc if for every profile *>*

$$\frac{\mathbb{E}[\operatorname{sc}\left(\overrightarrow{\succ}, f(\overrightarrow{\succ})\right)}{\max_{a}\operatorname{sc}\left(\overrightarrow{\succ}, a\right)} \ge c$$