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• Started in Porto Alegre, Brazil

• Currently, it is implemented in more than 1,500 cities around the world!
Ø Madrid, 2021, EUR 50M
Ø Paris, 2023, EUR 76M
Ø Montreal, 2024, CAD 45M
Ø Los Angeles, 2024, USD 8.5M
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Basic	Approval	Model
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• A set 𝑁 = {1,… , 𝑛} of voters

• 𝑃 = {𝑝!, … , 𝑝"} of projects

• Each 𝑝 ∈ 𝑀 has a cost 𝑐(𝑝) 	≥ 0

Ø For each 𝑊 ⊆ 𝑃, 𝑐 𝑊 = ∑#∈% 𝑐(𝑝)
• Budget limit 𝐵 ≥ 0 

• The outcome 𝑊 ⊆ 𝑃	is budget-feasible, i.e. 𝑐 𝑊 ≤ 𝐵
• Each 𝑖 ∈ 𝑁 approves 𝐴& ⊆ 𝑃
• Each 𝑖 ∈ 𝑁	has utility  𝑢&(𝑝) for each 𝑝 ∈ 𝑃

Ø Additive Utilities: For each 𝑊 ⊆ 𝑃, 𝑢& 𝑊 = ∑#∈% 𝑢&(𝑝)
Ø For now, assume that 𝑢&(𝑝) =1 for each 𝑝 ∈ 𝐴&, i.e. 𝑢& 𝑊 = |𝑊 ∩ 𝐴&|



Welfare	Maximization
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• Choose 𝑊 that maximizes the utilitarian welfare (i.e.  ∑!∈#𝑢!(𝑤)), subject 
to the budget constraint (𝑐 𝑊 ≤ 𝐵) (Knapsack problem)

• Greedy Algorithm: Adds alternatives in order of approval score, skipping 
those that are unaffordable

Approval Votes Cost Greedy Optimal

500 10,000

457 42,000

449 7,3000

430 13,800

398 9,500

323 11,200

𝐵 = 52000
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• Choose 𝑊 that maximizes the utilitarian welfare (i.e.  ∑!∈#𝑢!(𝑤)), subject 
to the budget constraint (𝑐 𝑊 ≤ 𝐵) (Knapsack problem)

• Greedy Algorithm: Adds alternatives in order of approval score, skipping 
those that are unaffordable

Population: 12K Population: 10K
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• Extended Justifies Representation in Committee Selection
Ø  𝑊 satisfies EJR if
o For all 𝑆 ⊆ 𝑁 and ℓ ∈ {1,… , 𝑘}
o If 𝑆 ≥ ℓ ⋅ ⁄! " (large) and ⋂#∈%𝐴# ≥ ℓ (cohesive)
o Then 𝑢# 𝑊 ≥ ℓ for some 𝑖 ∈ 𝑆
o “If a group deserves ℓ	candidates and has ℓ commonly approved 

candidates, then not every member should get less than ℓ utility”
Ø PAV satisfies EJR 

• Extended Justifies Representation in Participatory Budgeting
Ø  𝑊 satisfies EJR if
o For all 𝑆 ⊆ 𝑁 and 𝑇 ⊆ 𝑃
o If 𝑐 𝑇 ≤ ⁄|%|

! ⋅ 𝐵 (affordable) and 𝑇 ⊆ ⋂#∈%𝐴# (cohesive)
o Then 𝑢# 𝑊 ≥ |𝑇| for some 𝑖 ∈ 𝑆
o “If a group can afford  𝑇	that is approved by each 𝑖 ∈ 𝑆, then not 

every member in 𝑆 should get less than |𝑇| utility”
Ø Does PAV satisfy EJR in Participatory Budgeting?



PAV
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• Given a sequence 𝑠 = 1, ⁄? @ , ⁄? A , … , select a committee 
𝑊 that maximizes ∑B∈C 𝑠D' E

20K

𝑃! 

Pop. 60K Pop. 30K

𝑃' 𝑃( 

Budget 90K

20K 20K

𝑃) 

45K 30K

𝑃! 

Pop. 60K Pop. 30K

𝑃' 𝑃( 

Budget 90K

30K 30K

𝑃) 

30K
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• Given a sequence 𝑠 = 1, ⁄? @ , ⁄? A , … , select a committee 
𝑊 that maximizes ∑B∈C 𝑠D' E

• PAV violates proportionality
• Theorem [Peters et al. ‘21]: Every voting rule that only 

depends on voters’ utility functions and the collection of 
budget-feasible sets must fail proportionality
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Method	of	Equal	Shares
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• Split the budget equally among the voters, i.e. each voter gets 𝐵/𝑛 
• Until the budget is exhausted: 

• For each project no funded yet, divide its cost as evenly as 
possible among its approvers 

•  Fund an affordable alternative with the lowest max payment

0
Voter 1 Voter 2 Voter 3 Voter 4

1

2

3

4

5

1 2 3 4

𝑝!
𝑝"
𝑝#

0
Voter 1 Voter 2 Voter 3 Voter 4

1

2

3

4

5

0
Voter 1 Voter 2 Voter 3 Voter 4

1

2

3

4

5

𝑝! 𝑝" 𝑝#

6 10.5 8

𝐵 = 20  
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• Split the budget equally among the voters, i.e. each voter gets 𝐵/𝑛 
• Until the budget is exhausted: 

• For each project no funded yet, divide its cost as evenly as 
possible among its approvers 

•  Fund an affordable alternative with the lowest max payment
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• Theorem [Peters et al. ‘21]: The Method of Equal Shares 
satisfies EJR

• In 2023, Method of Equal Shares was used in Aarua 
(Switzerland), Wieliczka (Poland) and Świecie (Poland)



Fairness
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• Core in Committee Selection:
Ø  𝑊 satisfies core if
o For all 𝑆 ⊆ 𝑁 and 𝑇 ⊆ 𝑀
o If 𝑆 ≥ |𝑇| ⋅ ⁄$ % (large)
o Then 𝑢! 𝑊 ≥ 𝑢!(𝑇) for some 𝑖 ∈ 𝑆
o “If a group can afford 𝑇, then 𝑇 should not be a (strict) Pareto 

improvement for the group”

• Core in Participatory Budgeting
Ø  𝑊 satisfies EJR if
o For all 𝑆 ⊆ 𝑁 and 𝑇 ⊆ 𝑃
o If 𝑐 𝑇 ≤ ⁄|'|

$ ⋅ 𝐵 (affordable) 
o Then 𝑢! 𝑊 ≥ 𝑢!(𝑇) for some 𝑖 ∈ 𝑆
o “If a group can afford 𝑇, then 𝑇 should not be a (strict) Pareto 

improvement for the group”
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• The core can be empty
Ø 3 voters, 3 projects with cost 2 each, budget is B=3
Ø Whichever project we select, two of the voters can improve from (0,1)→(1,2)

 

𝑝! 𝑝" 𝑝#

𝑣! 2 1 0

𝑣" 0 2 1

𝑣# 1 0 2



Reinforcement	Learning	with	
Human	Feedback	(RLHF)
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…AI alignment involves ensuring that an AI system's objectives 
match those of its designers…

(wikipedia)

AI	Alignment
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A ≻ 𝒆𝒓𝜽 𝑨

𝒆𝒓𝜽 𝑨 + 𝒆𝒓𝜽 𝑩

  

𝒆𝒓𝜽 𝑩

𝒆𝒓𝜽 𝑨 + 𝒆𝒓𝜽 𝑩

  

B

B ≻ A

BTL Model

≻ BA

≻ AB

≻ BA

.

..

i𝑛𝑓"	 𝐿 𝜃; 𝜋 = i𝑛𝑓" 	∑#$% 𝑛#≻% 𝜋 ⋅ 𝑙𝑛(1 + 𝑒'$ % ('$ # )

Profile of Ordinal 
Preferences

Number of voters in 𝜋 
that prefer	A	to B

Random	Utility	Model
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B
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.

..≻A B C≻ …

≻D A C≻ …

≻B A D≻ …

≻A B D≻ …

.

..

𝜃&

𝜃'

𝑳𝒊𝒏𝒆𝒂𝒓	𝑴𝒐𝒅𝒆𝒍:	𝒓𝜽 𝒗 =< 𝜽,𝒗 >

Heterogeneous	Prefences
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• Pareto Optimality: A linear rank aggregation rule 𝑓 satisfies Pareto optimality if, whenever every 
voter prefers candidate 𝑎 over candidate 𝑏, then candidate a is ranked higher than candidate b in the 
output ranking

• Pairwise Majority Consistency (PMC): A ranking 𝜎 is called a PMC ranking for profile 𝜋 if for all a, b ∈ 
C, 𝑎	 ≻)	 𝑏 if and only if a majority of voters rank 𝑎	 ≻ 	𝑏. A linear rank aggregation rule satisfies PMC 
if, when a PMC ranking 𝜎 exists for the input profile 𝜋 and 𝜎 is feasible, then 𝑓(𝜋) 	= 	𝜎

Goals:

• What axioms are satisfied by aggregation methods used by existing RLHF algorithms?

•  Are there alternative aggregation methods that offer stronger axiomatic guarantees? 

Axiomatic	Approach



Theorem (informal): If a linear rank aggregation rule 𝑓 optimizes a loss function that is either nondecreasing 
and weakly convex, or strictly convex then 𝑓 fails PO and PMC

i𝑛𝑓$ 	 𝐿 𝜃; 𝜋, ℓ =
i𝑛𝑓$ 	∑%&' 𝑛%≻' 𝜋 ⋅ ℓ(𝑟$ 𝑏 − 𝑟$ 𝑎 )

A loss function ℓ:	ℝ →ℝ

BTL model: ℓ 𝑥 = ln(1 + 𝑒,) 

Loss-Based	Rules
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• Theorem: Leximax Copeland subject to PO satisfies 
a) PO
b) PMC
c) majority consistency 
d) winner monotonicity
and can be implemented in polynomial time by solving 𝑂(𝑚*) small linear programs
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• Theorem: Leximax Copeland subject to PO satisfies 
a) PO
b) PMC
c) majority consistency 
d) winner monotonicity
and can be implemented in polynomial time by solving 𝑂(𝑚*) small linear programs

• Majority Consistency: A linear rank aggregation rule 𝑓 satisfies majority consistency if when a 
candidate 𝑎 is ranked first by a majority of voters in the input profile, 𝑎 is ranked first in the output 
ranking

• Winner Monotonicity: A linear rank aggregation rule 𝑓 satisfies winner monotonicity if, when a 
candidate 𝑎 is ranked first in the output ranking, elevating 𝑎	in any voter’s preference does not cause 
𝑎 to lose their top position in the updated aggregate ranking
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Direct Democracy

?
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Direct Democracy Representative 
Democracy
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Direct Democracy Liquid Democracy Representative 
Democracy
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• Voters consist a social network with one-
way connections
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• Voters consist a social network with one-
way connections

• Every voter can either cast her vote or 
delegate her right to vote to another 
citizen
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• Voters consist a social network with one-
way connections

• Every voter can either cast her vote or 
delegate her right to vote to another 
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• Delegations are transitive
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• Voters consist a social network with one-
way connections

• Every voter can either cast her vote or 
delegate her right to vote to another 
citizen

• Delegations are transitive
• Every voter has a weight equal to the 

number of the votes that have been 
delegated to her, plus her right to vote

w=1 w=2

w=2

w=5
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• Voters consist a social network with one-
way connections

• Every voter can either cast her vote or 
delegate her right to vote to another 
citizen

• Delegations are transitive
• Every voter has a weight equal to the 

number of the votes that have been 
delegated to her, plus her right to vote

• In a binary election, the outcome is 
usually decided by  weighted majority

w=1 w=2

w=2

w=5

T

T

F

F

T



Liquid	Democracy	Applications
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Germany, 2010 Argentina, 2012 Australia, 2016



Model
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• Elections with two alternatives, 𝑇	and 𝐹, such that 𝑇	 ≻ 𝐹
• Each voter 𝑖 has competency level 𝑝B, which is the probability 

that 𝑖 casts a vote for 𝑇 

• The social network is represented by a directed graph, 𝐺(𝑉, 𝐸), 
where agents are the nodes and an edge (i , j) indicates that i 
“follows” j

• Optimistic View: 𝑖 approves j if (𝑖, 𝑗)	 ∈ 	𝐸	and 𝑝R > 𝑝B + 𝛼



Liquid	vs	Direct	Democracy
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.

.

.

.

.

.

#1

𝑝 = 0.8

#𝑛 − 1

𝑝 = 0.4

• Direct Democracy: As 𝑛 grows , due to the Condorcet Jury Theorem, 
the probability that the majority votes for the correct alternative goes 
to 0

• Liquid Democracy: If all leaves delegate to the hub, the probability of 
electing the correct alternative is 0.8



Liquid	vs	Direct	Democracy

CSCI 669- Evi Micha 57

.

.

.

.

.

.

#1

𝑝 = 0.8

#𝑛 − 1

𝑝 = 0.6

• Direct Democracy: As 𝑛 grows , due to the Condorcet Jury Theorem, 
the probability that the majority votes for the correct alternative goes 
to 1

• Liquid Democracy: If all leaves delegate to the hub, the probability of 
electing the correct alternative is 0.8



Delegation	Mechanisms
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• Given 𝐺(𝑉, 𝐸)	and vector 𝒑, a mechanism	𝑀	decides (possibly at 
random) the delegations
Ø  𝑃X 𝐺, 𝒑  is the probability that the outcome is T, under 𝑀
o Apply 𝑀 on	(𝐺(𝑉, 𝐸), 𝒑)
o Sample an instance from the distribution
o Each sink has weight equal to the number of vertices with 

directed paths to it
o Each sink 𝑖 votes for the correct alternative with probability 𝑝B
o The winner is determined by weighted majority

Ø  A mechanism is local when the decision for every agent i 
depends on her neighborhood



Local	Delegation	Mechanisms
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No delegations Delegate to the 
neighbor with the 
largest probability to 
vote for the correct 
alternative 

Delegate uniformly at 
random

Can we design a “good” delegation mechanism?
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• Gain of a mechanism M: 𝑔𝑎𝑖𝑛(𝑀, 𝐺, 𝒑) = 𝑃X 𝐺, 𝒑 - 𝑃Y 𝐺, 𝒑  

where 𝐷 is direct democracy

• Do no harm: For every 𝜖 > 0, there exists 𝑛Z ∈ ℤ such that for all 

𝐺(𝑉, 𝐸)	with 𝑉 ≥ 𝑛[ and 𝒑, 𝑔𝑎𝑖𝑛 𝑀, 𝐺, 𝒑 ≥ −𝜖

• Positive Gain: There exist 𝛾 > 0 and an instance (𝐺, 𝒑) such that 

𝑔𝑎𝑖𝑛 𝑀, 𝐺, 𝒑 ≥ γ

• Theorem [Kahng et. al, 18]: For any 𝛼 ∈ [0,1) there is no local 

delegation mechanism that satisfies do no harm and positive gain 
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• Direct delegation Mechanism (D): No voter delegates
• Full delegation Mechanism (𝐹): Every voter delegates to more informative 

voters whenever possible

• Theorem [M and Caragiannis, 2019]: For any 𝛼 ∈ [0,1) and 𝛿 > 0, there 
exists an instance (𝐺, 𝒑) such that either 𝑃! 𝐺, 𝒑 - 𝑃" 𝐺, 𝒑 ≥ #

$
− 𝛼 − 𝛿 

or 𝑃% 𝐺, 𝒑 - 𝑃" 𝐺, 𝒑 ≥ #
$
− 𝛼 − 𝛿 

.

.

.

.

.

.

#1

𝑝 = 0.8

#𝑛 − 1

𝑝 = 0.6

#1

𝑝 = 0.8

#𝑛 − 1

𝑝 = 0.4
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• High level idea of the proof:

.

.

.

.

.

.

#1
1
2 + 𝛼 +

𝛿
2

#𝑘

1/2

. . .

. . .

1 0

• Case I: Delegate with probability < !
"
 

#
𝑛 + 1
2 − 𝑘 − 1	 #

𝑛 − 1
2
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• High level idea of the proof:

.

.

.

.

.

.

. . .

. . .

• Case II: Delegate with probability ≥ !
"
 

#1
1
2 + 𝛼 +

𝛿
2

#𝑘

1/2 1 0

#
𝑛 + 1
2 − ℓ	 #ℓ

63
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.

.

.

.

.

.

. . .

#1
0.98

#
𝑛 + 1
2

0.99 0
#
𝑛 − 1
2
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• 𝑃Y 𝐺, 𝒑  goes to 0, as 𝑛 grows

• 𝑃c 𝐺, 𝒑 = 0.98


