
CSCI 699

Fair Division 3: Sortition

Evi Micha

Citizens' Assemblies

Citizens' Assemblies

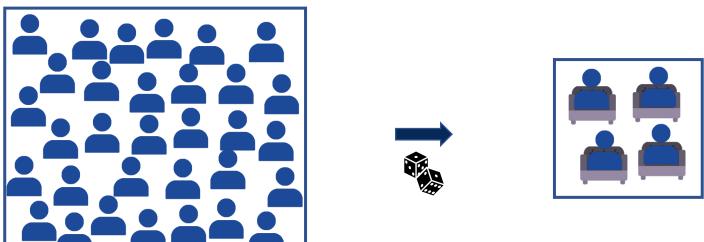
Athens 4th century BC

Florence 14th and 15th century Lombardy and Venice

12th to 18th century

Citizens' Assemblies

Permanent Citizens Assemblies at a national level


> The recommendations *should* be followed up within nine months

CSCI 699 - Evi Micha

Ideal Sortition Execution

Population

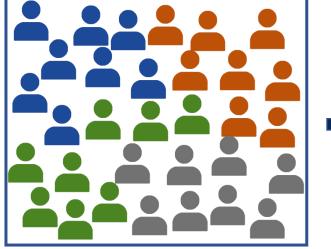
Panel

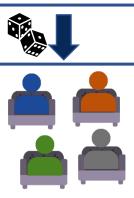
✓ **Fairness:** Everyone has equal chance of being on the panel

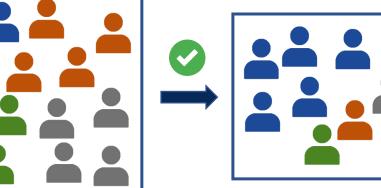
Proportional Representation: A panel selected uniformly at random reflects the composition of the population, in expectation

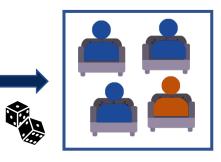
Sortition in Practice

Population Panel Letter Recipients Volunteers Climate Assembly UK 2020 Only 1,727 citizens accepted to participate out of the 30,000 recipients of the invitation!


Sortition in Practice


Population


Letter Recipients


Volunteers

Panel

Features Quotas

➤ Gender

- At least 47% of the representatives should females
- At least 47% of the representatives should males
- At least 3% of the representatives should self-identify non-binary

•

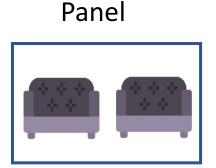
> Age

- At least 30% of the representatives ≤ 35
- At least 25% of the representatives ≥ 65

Geography

- At least 35% of the representatives form the south
- At least 30% of the representatives form the rural regions

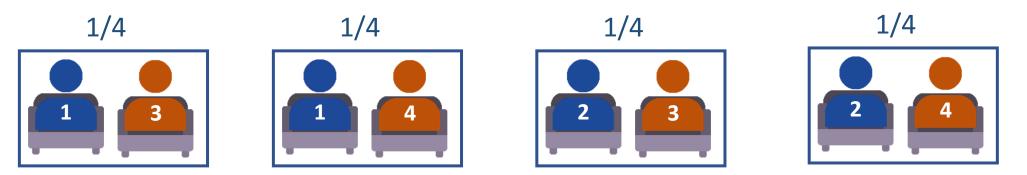
Model


- A set of volunteers $N = \{1, 2, ..., n\}$
- A set of features F, where each $f \in F$ gets values in V_f

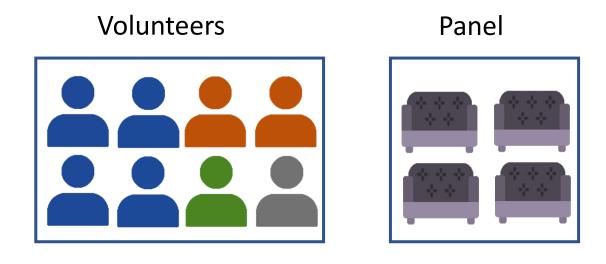
> E.g. feature gender g gets values in $V_g = \{non - binary, female, male\}$

- Each volunteer *i* is characterized by the features
- A set of quotas such that for each $f \in F$ and $v_f \in V_f$, the number of representatives with feature f equal to v_f should be at least ℓ_{v_f} and at most u_{v_f}
- Goal: Find a lottery over panels of size k such that
 - > Fairness: Each individual is selected with probability n/k (ex-ante requirement)
 - > Representation: Each panel in the lottery satisfies the quotas (ex-post requirement)

Fairness and Representation


Volunteers

Quotas

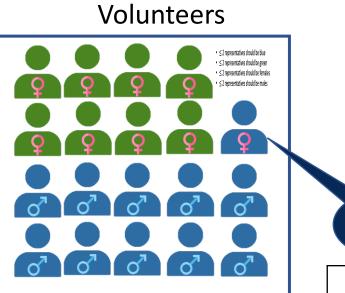

- One representative should be blue
- One representative should be orange

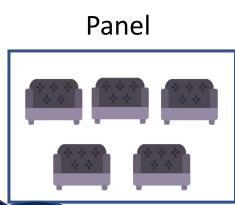
Fair and Representative Lottery

• Question: Can we always ensure fairness and representation?

Fairness and Representation

Quotas

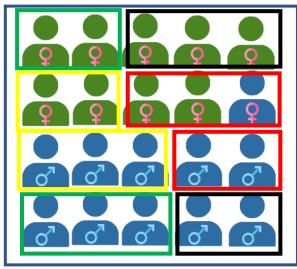

- One representative should be blue
- One representative should be orange
- One representative should be green
- One representative should be grey


• Theorem [FGGHP, 2021]: For a given set of agents, panel size, and set of features with associated quotas, it is NP-hard to decide whether there exists a panel that satisfies the quotas

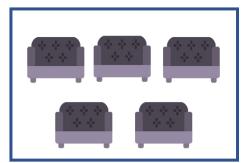
A Greedy Algorithm

- Start with an empty panel
- At each iteration for each $f \in F$ and $v_f \in V_f$ measure the need for v_f as following: $> need_{v_f} = \frac{\ell_{v_f - (\# panel members with feature f equal to v_f)}}{\# remaining pool members with feature f equal to v_f}$
- Choose v_f with the highest need
- Choose a representative at random among all the individuals in the pool with feature f equal to v_{f}
- If for some v_f , there are u_{v_f} members in the panel with feature f equal to v_f , then remove from the pool all the individuals with feature f equal to v_f
- If the final panel does not satisfy the quotas, restart

A Greedy Algorithm


Quotas

- \leq 2 representatives should be blue
- \leq 2 representatives should be green
- \leq 2 representatives should be females
- \leq 2 representatives should be males


\perp /				
1/16	Need of Green	Need of Blue	Need of Female	Need of Male
Round 1	² / ₉	² / ₁₁	² / ₁₀	² / ₁₀
Round 2	1/8	² / ₁₁	1/9	² / ₁₀
Round 3	¹ / ₈	¹ / ₁₀	1/9	1/9
Round 4	⁰ / ₇	¹ / ₁₀	0/9	¹ / ₉
Round 5	⁰ / ₇	0/9	0/9	0/8

Fair Lottery

Volunteers

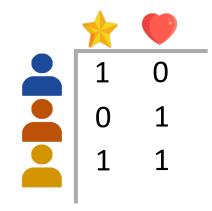
Panel

Quotas

- \leq 2 representatives should be blue
- \leq 2 representatives should be green
- \leq 2 representatives should be females
- \leq 2 representatives should be males

Fair Lottery

• Maximum Nash Social Welfare


> Return a lottery over quota-feasible panels of size k such that $\max \prod_{i \in N} \Pr[i \text{ is selected}]$

• Leximin

- > Return a lottery over quota-feasible panels of size k such that $\max \min_{i \in N} \Pr[i \text{ is selected}]$ subject to that maximize the second minimum probability, etc.
- Theorem [FGGHP, 2021]: Maximum Nash Social Welfare and Leximin equalize volunteers' selection probabilities whenever the quotas make it feasible.
- Question: What about maximizing the utilitarian social welfare, i.e. sum of probabilities?

Axiomatic Properties

- Committee Monotonicity: When k increases, the selection probability of all volunteers weakly increases
- Theorem [FGGHP, 2021]: No selection algorithm can guarantee committee monotonicity
- Proof:

Axiomatic Properties

- Population Monotonicity: When more volunteers are added, the selection probability of all the existing volunteers weakly decreases
- Theorem [FGGHP, 2021]: No selection algorithm can guarantee committee monotonicity