

CSCI 699

Fair Division: Indivisible Goods

Evi Micha

Credit for the slides : Nisarg Shah

CSCI 699- Evi Micha

• Goods which cannot be shared among players

Model

- Agents: $N = \{1, 2, ..., n\}$
- Resource: Set of indivisible goods $M = \{g_1, g_2, \dots, g_m\}$
- Allocation $A = (A_1, ..., A_n) \in \Pi_n(M')$ is a partition of M' for some $M' \subseteq M$.
- Each agent *i* has a valuation v_i : M → ℝ₊
 v_i : M → ℝ₋ in the case of bads, v_i : M → ℝ for both goods and bads
- Additive Valuations: $\forall X \subseteq M$, $v_i(X) = \sum_{g \in X} v_i(g)$

			V
8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

Need new guarantees!

Envy-Freeness up to One Good

Envy-Freeness up to One Good (EF1)

• An allocation is envy-free up to one good (EF1) if, for all agents i, j, there exists a good $g \in A_j$ for which

$$v_i(A_i) \ge v_i(A_j \setminus \dots)$$

 "Agent i may envy agent j, but the envy can be eliminated by removing a single good from j's bundle."

Round Robin Algorithm

- Fix an ordering of the agents σ .
- In round $k \mod n$, agent σ_k selects their most preferred remaining good.
- Theorem: Round robin satisfies EF1.

Envy Cycle Elimination Algorithm

- Envy graph: Edge from *i* to *j* if *i* envies *j*
- Envy Cycle Elimination[Lipton et al. 2004]
 - > One at a time, allocate a good to an agent that no one envies
 - > While there is an envy cycle, rotate the bundles along the cycle.
 - $\,\circ\,$ Can prove this loop terminates in a polynomial number of steps

Envy Cycle Elimination Algorithm

Envy Cycle Elimination Algorithm

- Theorem [Lipton et al. 2004]: Envy Cycle Elimination satisfies EF1
- Proof:
 - > By induction on the number of rounds; let A^t be the allocation at the end of round t
 - > For t = 0, A^0 is obviously EF1
 - > Suppose that A^t is EF1
 - > Case 1: At round t + 1, one more item is allocated
 - The item is allocated to a non-envied agent and therefore A_{t+1} is EF1
 - Case 2: At round t + 1, a cycle is eliminated
 - 1. For each $i \in N$, $v_i(A_i^{t+1}) \ge v_i(A_i^t)$
 - 2. For each $j \in N$, $\exists j' \in N$ such that $A_j^{t+1} = A_{j'}^t$
 - 3. For each $i, j \in N$, $\exists g \in A_i^t$ such that $v_i(A_i^t) \ge v_i(A_j^t \setminus \{g\})$
 - Therefore, for each $i, j \in N$, $\exists g \in A_i^{t+1}$ and $\exists j' \in N$ such that

$$v_i(A_i^{t+1}) \ge v_i(A_i^t) \ge v_i(A_{j'}^t \setminus \{g\}) = v_i(A_j^{t+1} \setminus \{g\})$$

Efficiency+ EF1

- Weak Pareto optimality (WPO)
 - > Allocation A is weakly Pareto optimal if there is no allocation B such that $v_i(B_i) > v_i(A_i)$ for all $i \in N$.
 - "Can't make everyone happier"
- Pareto optimality (PO)
 - > Allocation A is Pareto optimal if there is no allocation B such that $v_i(B_i) \ge v_i(A_i)$ for all agents $i \in N$, and at least one inequality is strict.
 - "Can't make someone happier without making someone else less happy"
- Neither envy cycle elimination algorithm nor round robin is even weak Pareto optimal (Why?)

EF1+PO for goods

- Maximum Nash Welfare (MNW) to the rescue!
 - > Essentially, maximize the Nash welfare across all integral allocations

• Theorem [Caragiannis et al. '16]

> (Almost true) Any allocation in $\operatorname{argmax}_A \prod_{i \in N} v_i(A_i)$ is EF1 + PO.

EF1+PO for goods

• Proof that A maximizing $\prod_i v_i(A_i)$ is EF1 + PO

PO is obvious

- Suppose for contradiction that there is an allocation *B* such that $V_i(B_i) \ge V_i(A_i)$ for each *i* and $V_i(B_i) > V_i(A_i)$ for at least one *i*
- Then, $\prod_i V_i(B_i) \ge \prod_i V_i(A_i)$, which is a contradiction

> EF1 requires a bit more work

- Fix any agents *i*, *j* and consider moving good $g \in A_j$ to A_i ,
- Since *A* is MNW

 $\circ \Rightarrow v_i(A_i \cup \{q^*\}) \ge v_i(A_i)$

$$\circ \Rightarrow V_i(A_i \cup \{g\}) \cdot V_j(A_j \setminus \{g\}) \leq V_i(A_i) \cdot V_j(A_j)$$

$$\circ \Rightarrow (v_i(A_i) + v_i(g)) \cdot (v_j(A_j) - v_j(g)) \leq v_i(A_i) \cdot v_j(A_j)$$

$$\circ \Rightarrow \cdot \frac{v_j(A_j) - v_j(g)}{v_j(A_j)} \leq \frac{v_i(A_i)}{v_i(A_i) + v_i(g)} = \frac{v_i(A_i) + v_i(g) - v_i(g)}{v_i(A_i) + v_i(g)}$$

$$\circ \Rightarrow 1 - \frac{v_j(g)}{v_j(A_j)} \leq 1 - \frac{v_{i(g)}}{v_i(A_i \cup \{g\})} \Rightarrow \frac{v_j(g)}{v_j(A_j)} \geq \frac{v_i(g)}{v_i(A_i \cup \{g\})} \geq \frac{v_i(g)}{v_i(A_i \cup \{g\})}$$

$$\bullet \text{ where } g \in A_j \text{ is the good liked the most by } i$$

$$\circ \Rightarrow \sum_{g \in A_j} \frac{v_j(g)}{v_j(A_j)} \geq \sum_{g \in A_j} \frac{v_i(g)}{v_i(A_i \cup \{g^*\})}$$

What is wrong in these arguments?

EF1+PO for goods

- Edge case: all allocations have zero Nash welfare
 - > E.g., allocate two goods between three agents
 - > Allocating both goods to a single agent can violate EF1
 - Requires a slight modification of the rule in this edge case
 - Step 1: Choose a subset of agents $S \subseteq N$ with largest |S| such that it is possible to give a positive utility to each agent in S simultaneously
 - Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S} V_i(A_i)$
 - > Quick questions:

 \circ How does this fix the example above?

Computation

- For indivisible goods, finding an MNW allocation is strongly NP-hard (NP-hard even if all values are bounded)
- Open Question:
 - Can we compute *some* EF1+PO allocation in polynomial time?
 - > [Barman et al., '17]:
 - There exists a pseudo-polynomial time algorithm for finding an EF1+PO allocation
 - Time is polynomial in n, m, and $\max_{i,g} v_{i,g}$
 - Already better than the time complexity of computing an MNW allocation

Envy-Freeness up to One Bad (EF1)

• An allocation is envy-free up to one bad (EF1) if, for all agents i, j, there exists a bad $g \in A_i$ for which

```
v_i(A_i \setminus \{g\}) \ge v_i(A_j))
```

- "Agent i may envy agent j, but the envy can be eliminated by removing a single bad from i's bundle."
- Question:
 - > Does round robin satisfy EF1?
 - > Does envy cycle elimination satisfy EF1?

Envy Cycle Elimination Algorithm for Bads

- Envy graph: Edge from *i* to *j* if *i* envies *j*
- Natural Variation of Envy Cycle Elimination
 - > One at a time, allocate a good to an agent that envies no one
 - > While there is an envy cycle, rotate the bundles along the cycle.

Envy Cycle Elimination Algorithm for Bads

	$\boldsymbol{g_1}$	${oldsymbol{g}}_2$	g_3	g_4	${oldsymbol{g}}_5$	${oldsymbol{g}}_{6}$	g_7
<i>a</i> ₁	-1	-4	-2	-3	0	-1	-3
<i>a</i> ₂	-2	-1	-2	-2	-3	-1	-4
<i>a</i> ₃	-1	-3	-1	-1	-3	-10	-2

Envy Cycle Elimination Algorithm for Bads

- Theorem [Bhaskar et al. 2021]: A variation of Envy Cycle Elimination, in which the cycles that are eliminated are carefully chosen, satisfies EF1
 - Each agent has an outgoing edge only to the agent whom she envies and whose bundle has maximum utility

EF1 with Goods and Bads [Aziz et al. 2019]

• An allocation is envy-free up to one item (EF1) if, for all agents i, j, there exists an item $o \in A_i \cup A_j$ for which

$$v_i(A_i \setminus \{o\}) \ge v_i(A_j \setminus \{o\})$$

• Round robin fails EF1

Double Round Robin

- Let O⁻ = {o ∈ O: ∀i ∈ N, v_i(o) ≤ 0} denote all unanimous bads and O⁺ = {o ∈ O: ∃i ∈ N, v_i(o) > 0} denote all objects that are a good for some agent.
 - > Suppose that $|O^-| = an$ for some $a \in \mathbb{N}$. If not, add dummy bads with $v_i(o) = 0$ for all $i \in N$.
- Double round robin:
 - > Phase 1: O^- is allocated by round robin in order (1, 2, ..., n 1, n)
 - > Phase 2: O^+ is allocated by round robin in order (n, n 1, ..., 2, 1)
 - > Agents can choose to skip their turn in phase 2

Double Round Robin

Double Round Robin

 Theorem [Aziz et al. 2019]: The double round robin algorithm outputs an allocation that is EF1 for combinations of goods and bads in polynomial time

• Proof:

- > Consider $i, j \in N$ with i < j
- i does not envy j for more than one items
 - $u_i(A_i \cap O^-) \ge u_i(A_j \cap O^-)$, since *i* chooses before *j* in phase 1 ○ $u_i(A_i \cap O^+) \ge u_i(A_j \cap O^+ \setminus \{g\})$ since *j* chooses at most once before *i* in phase 2
- > j does not envy i for more than one items
 - $u_j(A_j \cap O^- \setminus \{g\}) \ge u_j(A_i \cap O^-)$, since *i* chooses just once before *j* in phase 1

 $○ u_j(A_j ∩ O^+) ≥ u_j(A_i ∩ O^+)$ since *j* chooses before *i* in phase 2

EF1 + PO for Bads

- Theorem [Aziz et al. 2019]:
 - > When items can be either goods or bads and n = 2, an EF1 + PO allocation always exists and can be found in polynomial time
- Theorem [Ebadian et al. 2022; Garg et al. 2022]:
 - For bivalued instances, an EF1 + PO allocation always exists and can be found in polynomial time

Open Problem: Does an EF1 + PO allocation always exist for bads?

EFX

- Envy-freeness up to any good (EFX)
 - $\succ \forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - In words, i shouldn't envy j if she removes any good from j's bundle
 - > EFX \Rightarrow EF1 $(\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\}))$
- EF1 vs EFX example:
 - \succ {A \rightarrow P1; B,C \rightarrow P2} is EF1 but not EFX, whereas .
 - > {A,B → P1; C → P2} is EFX.

• Open question: Does there always exist EFX allocation?

EFX

- (Easy to prove) EFX allocation always exists when...
 - > Agents have identical valuations (i.e. $V_i = V_j$ for all i, j)
 - > Agents have binary valuations (i.e. $v_{i,g} \in \{0,1\}$ for all i, g)
 - > There are n = 2 agents with general additive valuations
- But answering this question in general (or even in some other special cases) has proved to be surprisingly difficult!

EFX: Recent Progress

- Partial allocations
 - [Caragiannis et al., '19]: There exists a partial EFX allocation A that has at least half of the optimal Nash welfare
 - ▶ [Ray Chaudhury et al., '19]: There exists a partial EFX allocation A such that for the set of unallocated goods U, $|U| \le n 1$ and $V_i(A_i) \ge V_i(U)$ for all i
- Restricted number of agents
 - > [Ray Chaudhury et al., '20]: There exists a complete EFX allocation with n = 3 agents
- Restricted valuations
 - > [Amanatidis et al., '20]: Maximizing Nash welfare achieves EFX when there exist a, b such that $v_{i,g} \in \{a, b\}$ for all i, g

(Relaxed) Equitability

Equitability

• Recall equitability:

$$\forall i, j \in N: v_i(A_i) \ge v_j(A_j)$$

- We can relax it in the same way we did for envy-freeness [Gourves et al. 2014, Freeman et al. 2019].
- Equitability up to one good (EQ1):

 $\forall i, j \in N, \exists g \in A_j : v_i(A_i) \ge v_j(A_j \setminus \{g\})$

• Equitability up to any good (EQX):

 $\forall i, j \in N, \forall g \in A_j : v_i(A_i) \ge v_j(A_j \setminus \{g\})$

Algorithm for Achieving EQX

- Greedy Algorithm [Gourves et al. 2014]:
 - Allocate to the lowest-utility agent the unallocated good that she values the most.
- Almost the same as EF1 algorithm, but achieves EQX!
 - Compare to EFX, existence still unknown

EQ1/EQX + PO

- Theorem [Freeman et al. 2019]:
 - > An allocation satisfying EQ1 and PO may not exist.
 - Compare to EF1 + PO always exists

	${oldsymbol{g}}_1$	${oldsymbol{g}}_2$	${oldsymbol{g}}_3$	${oldsymbol{g}}_4$	$oldsymbol{g}_5$	${oldsymbol{g}}_{6}$
<i>a</i> ₁	1	1	1	0	0	0
<i>a</i> ₂	0	0	0		1	1
a_3	0	0	0	1	1	

In Summary

- Round Robin and Envy Cycle Elimination Algorithm satisfy EF1 but not weak PO for goods
- MNW achieves EF1+PO for goods
- Round Robin satisfies EF1 for bads
- A careful implementation of Envy Cycle Elimination Algorithm satisfies EF1 for bads
- Round Robin does not satisfy EF1 for mixed items, but Double Round Robin does
- EF1+PO allocation for bads is a major open question
- EFX allocation is a major open question
- EQX allocation always exists
- EQX+PO allocation does not always exist

Real Life Applications

- About a third of the world's food is thrown away
- In the United States, between 30 and 40 percent of food is wasted, which roughly equals 149 billion meals
- In 2021, close to 12 percent of the global population, or, equivalently, 928 million people, were food insecure
- In the United States, 44.2 million people lived in food-insecure households in 2022
- Food rescue organizations worldwide are leading programs aimed at addressing food waste and food insecurity

Rejected load of food? Donate it! If you have a rejected load of food, donating is now easier and more cost-effective than dumping. With a network of food banks across the Indiana capable of accepting large truckloads, you can get back on the

- Food Drop is such a program, in the state of Indiana.
- Food Drop matches truck drivers with rejected truckloads of food
- The average amount of food matched per month is 10,447 lbs
- Matching decisions were manually made
 - > check availability and willingness to accept each donation from the food bank's side
 - > facilitate the exchange of contact information between the food bank and truck driver,
 - and so on.

- Efficiency for drivers
- Envy-freeness for individuals

Distribution of Food Insecure Population and Food Donations in California

