

CSCI 699

Voting III: Distortion

Evi Micha

Credit for the slides: Nisarg Shah

CSCI 699- Evi Micha

Utilitarian Approach

Voting with Ranked Ballots

Utilitarian Voting with Ranked Ballots

Optimal Voting Rules with Ranked Ballots

Minimize distortion (Worst-case approximation ratio for utilitarian social welfare)

Voting with Ranked Ballots

- *N* = set of *n* voters
- A = set of m alternatives
 - > $\Delta(A)$ = set of distributions over A
- $\overrightarrow{\succ}$ = observed ranked preference profile
 - > \succ_i = preference ranking of voter *i*
 - > $a >_i b$ means the voter ranks a higher than b
- (Randomized) Voting rule *f*
 - > Maps every preference profile $\overrightarrow{\succ}$ to a distribution over alternatives $f(\overrightarrow{\succ}) = x \in \Delta(A)$
 - > We say that f is deterministic if $f(\overrightarrow{\succ})$ has singleton support for every $\overrightarrow{\succ}$

Utilitarian Distortion

- 1. There exists an underlying utility profile \vec{u} such that for each $i \in N$:
 - ▶ Consistency (denoted $u_i \triangleright \succ_i$): $\forall a, b : a \succ_i b \Rightarrow u_i(a) \ge u_i(b)$
 - > Unit-sum: $\sum_a u_i(a) = 1$

o [Aziz 2019] provides seven justifications!

- ▶ Risk-neutrality: For $x \in \Delta(A)$, $u_i(x) = \sum_a u_i(a) \cdot x(a)$
- 2. If we knew the utilities, we would want to maximize the (utilitarian) social welfare
 - $\succ sw(x, \vec{u}) = \sum_{i \in N} u_i(x)$
- 3. Because this is impossible given the limited ranked information, we want to best approximate the social welfare in the worst case.

Utilitarian Distortion

Distortion

dist
$$(x, \overrightarrow{\succ}) = \sup_{\overrightarrow{u} \, \triangleright \, \overrightarrow{\succ}} \frac{\max_{a \in A} sw(a, \overrightarrow{u})}{sw(x, \overrightarrow{u})}$$

• Given voting rule f $dist(f) = \max_{\overrightarrow{\succ}} dist(f(\overrightarrow{\succ}), \overrightarrow{\succ})$

What is the lowest possible dist(f)? Which voting rule achieves it?

- Suppose we choose *a*:
 - > How much better is *b*?

$$\frac{sw(b,\vec{u})}{sw(a,\vec{u})} = \frac{\frac{1}{2} + \frac{2}{3} + \frac{1}{3}}{\frac{1}{2} + \frac{1}{4} + \frac{1}{3}} = \frac{18}{13}$$

> How much better is *c*?

$$\frac{sw(c,\vec{u})}{sw(a,\vec{u})} = \frac{0 + \frac{1}{12} + \frac{1}{3}}{\frac{1}{2} + \frac{1}{4} + \frac{1}{3}} = \frac{5}{13}$$

- Suppose we choose *a*:
 - How much better can b be?

$$\max_{\vec{u} \succ \vec{\succ}} \frac{sw(b, \vec{u})}{sw(a, \vec{u})} = \frac{\frac{1}{3} + 1 + \frac{1}{3}}{\frac{1}{3} + 0 + \frac{1}{3}} = \frac{5}{2}$$

> How much better can *c* be?

$$\max_{\vec{u} \succ \vec{r}} \frac{sw(c, \vec{u})}{sw(a, \vec{u})} = \frac{\frac{1}{3} + 0 + \frac{1}{3}}{\frac{1}{3} + 0 + \frac{1}{3}} = 1$$

> Hence, $dist(a, \vec{r}) = \frac{5}{2}$

- Suppose we choose *b*:
 - > How much better can a be?

$$\max_{\vec{u} \succ \vec{\succ}} \frac{sw(a, \vec{u})}{sw(b, \vec{u})} = \frac{1 + \frac{1}{3} + 1}{0 + \frac{1}{3} + 0} = 7$$

- Suppose we choose *c*:
 - > How much better can a be?

$$\max_{\vec{u} \succ \vec{\succ}} \frac{sw(a, \vec{u})}{sw(c, \vec{u})} = \frac{1 + \frac{1}{2} + 1}{0 + 0 + 0} = inf$$

Optimal Deterministic Distortion

- Theorem [Caragiannis, Procaccia, 2011; Caragiannis, Nath, Procaccia, Shah, 2017]
 - > For deterministic aggregation of ranked ballots, the optimal distortion is $\Theta(m^2)$
- Proof (lower bound):
 - > High-level approach:
 - $\,\circ\,$ Take an arbitrary voting rule f
 - \circ Construct a preference profile $\overrightarrow{\succ}$
 - \circ Let f choose a winner a on $\overrightarrow{\succ}$
 - Reveal a bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$ in which a is $\Omega(m^2)$ factor worse than the optimal alternative

- Proof (lower bound):
 - Let f be any deterministic voting rule
 - > Consider $\overrightarrow{\succ}$ on the right
 - > Case 1: $f(\overrightarrow{>}) = a_m$ • Infinite distortion. Why?

≻ Case 2:
$$f(\overrightarrow{\succ}) = a_i$$
 for some $i < m$

 \circ Bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$

- Voters in column i have utility 1/m for every alternative
- All other voters have utility 1/2 for their top two alternatives

$$o sw(a_i, \vec{u}) = \frac{n}{m-1} \cdot \frac{1}{m}$$
, sw $(a_m, \vec{u}) ≥ \frac{n-n/(m-1)}{2} = Ω(n)$
 $o \text{ Distortion} = Ω(m^2)$

n/(m-1) voters per column a_1 a_2 ... a_m a_{m-1} a_m ... a_m \vdots \vdots \vdots

- Proof (upper bound):
 - Plurality rule: Select an alternative a that is the top choice of the most voters
 - > For this plurality winner:
 - At least n/m voters have a as their top choice (pigeonhole principle)
 - \odot Every voter has utility at least $^{1}\!/_{m}$ for their top choice (pigeonhole principle)
 - > Hence, for every consistent utility profile \vec{u} :

 $\circ sw(a, \vec{u}) \geq n/m^2$

 $\circ sw(a^*, \vec{u}) \leq n$ for every alternative a^*

 $\rightarrow dist(a, \overrightarrow{\succ}) = O(m^2)$

Optimal Randomized Distortion

- Theorem [Boutilier, Caragiannis, Haber, Lu, Procaccia, and Sheffet, 2015]
 - > For randomized aggregation of ranked ballots, the optimal distortion is $O(\sqrt{m} \cdot \log^* m)$ but $\Omega(\sqrt{m})$
- Proof (lower bound):
 - Same high-level approach:
 - \circ Take an arbitrary *randomized* voting rule f
 - \circ Construct a preference profile $\overrightarrow{\succ}$
 - Let *f* choose a distribution *x* over alternatives
 - Reveal a bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$ in which the expected social welfare under x is $\Omega(\sqrt{m})$ factor worse than the optimal social welfare

Randomized Rules

- Proof (lower bound):
 - > Let f be an arbitrary rule

- n/\sqrt{m} voters per column a_1 a_2 ... $a_{\sqrt{m}}$::::
- \succ Consider $\overrightarrow{\succ}$ on the right with $\sqrt{m}\,$ special alternatives
- > f returns distribution x in which at least one special alternative (say a_i) must be chosen w.p. at most $\frac{1}{\sqrt{m}}$
- > Bad utility profile \vec{u} consistent with $\overrightarrow{>}$:
 - \circ All voters ranking a_i first have utility 1 for a_i
 - \circ All other voters have utility $^{1}/_{m}$ for every alternative
 - sw $(a_i, \vec{u}) = \Theta\left(\frac{n}{\sqrt{m}}\right)$ but $sw(a, \vec{u}) \le \frac{n}{m}$ for every other alternative a

o
$$sw(x, \vec{u}) \le \left(\frac{1}{\sqrt{m}}\right) \cdot \Theta\left(\frac{n}{\sqrt{m}}\right) + \left(\frac{1 - \frac{1}{\sqrt{m}}}{\sqrt{m}}\right) \cdot \frac{n}{m} = O(\frac{n}{m})$$

o Hence, $dist(x, \vec{u}) = \Omega(\sqrt{m})$

Optimal Randomized Distortion

• Harmonic Rule

> The rule that achieves $O(\sqrt{m} \cdot \log^* m)$ distortion is complicated, but they propose a simpler harmonic rule that achieves $O(\sqrt{m} \cdot \log m)$ distortion

Harmonic Rule

- Each voter *i* awards 1/r points to her r^{th} ranked alternative for every $r \in \{1, ..., m\}$
- Harmonic score of alternative a, denoted $hsc(a, \overrightarrow{>})$, is the total point awarded to a
- W.p. $\frac{1}{2}$, choose each $a \in A$ with probability proportional to $hsc(a, \overrightarrow{>})$
- W.p. $\frac{1}{2}$, choose each $a \in A$ uniformly at random

≻ Key proof idea: ○ hsc(a, ⇒) ≥ sw(a, u) for every a, while ∑_a hsc(a, ⇒) = O(log m) · ∑_a sw(a, u)

Optimal Randomized Distortion

- Theorem [Ebadian, Kahng, Peters, Shah, 2022]
 - > For randomized aggregation of ranked ballots, the optimal distortion is $\Theta(\sqrt{m})$.

Metric Distortion

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

Assess quality using the underlying metric

Why The Metric?

Samuel Merrill III & Bernard Grofman advanges in the Spatial Theory of Voting

EDITED BY James M.Enelow AND Melvin J.Hinich

CAMERIDGE

CSCI 699- Evi Micha

Why The Metric?

Metric Distortion

- 1. There exists an underlying metric d over voters and alternatives such that:
 - ▶ Consistency (denoted $d \triangleright \overrightarrow{\succ}$) : $\forall a, b : a \succ_i b \Rightarrow d(i, a) \leq d(i, b)$
 - ▶ Triangle inequality: $\forall x, y, z, d(x, y) + d(y, z) \ge d(x, z)$
 - ▶ Risk-neutrality: For $x \in \Delta(A)$, $c_i(x) = \sum_a d(i, a) \cdot x(a)$
- 2. If we knew the costs, we would minimize the social cost > $sc(x,d) = \sum_{i \in N} d(i,x)$
- Because this is impossible given the limited ranked information, we want to best approximate the social cost in the worst case.

Metric Distortion

Distortion

dist
$$(x, \overrightarrow{\succ}) = \sup_{d \rhd \overrightarrow{\succ}} \frac{sc(x, d)}{\min_{a \in A} sc(a, d)}$$

• Given voting rule f $dist(f) = \max_{\overrightarrow{\succ}} dist(f(\overrightarrow{\succ}), \overrightarrow{\succ})$

What is the lowest possible distortion of deterministic and randomized rules? Which voting rules achieves it?

Lower Bound

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

 A simple lower bound of 3 (deterministic rules) with just two candidates

- Question: What is the distortion of veto?
- Unbounded!

• Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:

Rule	Distortion
k-approval ($k > 2$)	Unbounded
Plurality, Borda count	$\Theta(m)$
Harmonic rule*	$O\left(\frac{m}{\sqrt{\log m}}\right)$, $\Omega\left(\frac{m}{\log m}\right)$
Best positional scoring rule	$\Omega(\sqrt{\log m})$
STV	$O(\log m), \ \Omega(\sqrt{\log m})$
Copeland's rule	5
Best deterministic rule	≥ 3

*Deterministic version of the harmonic rule,

which simply picks an alternative with the largest harmonic score

- The instance-optimal deterministic rule can be computed in polynomial time by solving a number of linear programs.
- Open question: What is the best distortion achievable by any positional scoring rule?

- Theorem [Munagala, Wang, 2019]:
 - > There exists a deterministic voting rule with distortion $2 + \sqrt{5} \approx 4.236$.
- Lemma [Munagala, Wang, 2019]: If f is a voting rule such that for every election, the domination graph of $f(\overrightarrow{\succ})$ has a perfect matching, then f has distortion equal to 3.

Domination Graph of Candidate *a*

Edge (i, j) exists when, in *i*'s vote, *a* weakly defeats the top choice of *j*

Main Lemma

- Lemma [Munagala, Wang, 2019]: If f is a voting rule such that for every election, the domination graph of $f(\overrightarrow{\succ})$ has a perfect matching, then f has distortion equal to 3.
- Proof
- Let *a* be the optimal alternative

 $sc(a) = \sum_{i \in N} d(i, a)$

 $\leq \sum_{i \in N} d(i, top(M(i)))$ ($a \ge_i top(M(i))$ from the definition of the domination graph)

- $\leq \sum_{i \in N} d(i, b) + d(b, top(M(i))$ (triangle inequality)
- $\leq \sum_{i \in N} d(i, b) + d(b, top(i))$ (M is a perfect mathing)
- $\leq \sum_{i \in N} d(i, b) + d(b, i) + d(i, top(i))$ (triangle inequality)
- $\leq \sum_{i \in N} d(i, b) + d(b, i) + d(i, b)$
- $\leq 3 \cdot sc(b)$

Optimal Distortion

- Theorem [Gkatzelis, Halpern, Shah, 2020]:
 - There always exists an alternative whose domination graph admits a perfect matching, and PluralityMatching outputs any such alternative.
- Theorem [Kizilkaya, Kempe, 2022]:
 - There always exists an alternative whose domination graph admits a perfect matching, and Plurality Veto outputs any such alternative.

Randomized Rules

- Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:
 - > No randomized rule has distortion better than 2.
 - > RandomDictatorship has distortion $3 \frac{2}{n}$.
- Theorem [Kempe 2020a]:
 - > There is a randomized voting rule with access to only plurality votes with distortion $3 \frac{2}{m}$.
- Theorem [Charikar, Ramakrishnan, 2022; Pulyassary, Swamy, 2021]:
 - > No randomized rule has distortion better than 2.112 for all m.
 - \circ Weaker lower bounds for fixed, finite m
- Theorem [Charikar, Ramakrishnan, Wang, Wu, 2024]:
 - > There is a randomized voting rules with distortion less than 2.753.
- Open question: What is the optimal metric distortion of randomized rules?