

CSCI 699

Voting III: Distortion

Evi Micha

Credit for the slides: Nisarg Shah

CSCI 699- Evi Micha 1

Utilitarian Approach

Voting with Ranked Ballots

Utilitarian Voting with Ranked **Ballots**

Optimal Voting Rules with Ranked Ballots

Minimize distortion (Worst-case approximation ratio for utilitarian social welfare)

Voting with Ranked Ballots

- $N =$ set of *n* voters
- $A =$ set of m alternatives
	- \triangleright $\Delta(A)$ = set of distributions over A
- $\overrightarrow{>=}$ observed ranked preference profile
	- $\triangleright \triangleright_i$ = preference ranking of voter i
	- \triangleright $\alpha >_{i} b$ means the voter ranks α higher than b
- (Randomized) Voting rule f
	- > Maps every preference profile $\overrightarrow{>}$ to a distribution over alternatives $f(\overrightarrow{>})=$ $x \in \Delta(A)$
	- > We say that f is deterministic if $f(\overrightarrow{>})$ has singleton support for every $\overrightarrow{>}$

Utilitarian Distortion

- 1. There exists an underlying utility profile \vec{u} such that for each $i \in N$:
	- \triangleright Consistency (denoted $u_i \triangleright >_i$): $\forall a, b : a >_i b \Rightarrow u_i(a) \ge u_i(b)$
	- \triangleright Unit-sum: $\sum_a u_i(a) = 1$

o [Aziz 2019] provides seven justifications!

- \triangleright Risk-neutrality: For $x \in \Delta(A)$, $u_i(x) = \sum_{a} u_i(a) \cdot x(a)$
- 2. If we knew the utilities, we would want to maximize the (utilitarian) social welfare
	- \triangleright SW(x, \vec{u}) = $\sum_{i \in N} u_i(x)$
- 3. Because this is impossible given the limited ranked information, we want to best approximate the social welfare in the worst case.

Utilitarian Distortion

Distortion

$$
dist(x, \overrightarrow{>}) = \sup_{\overrightarrow{u} \in \overrightarrow{>} } \frac{\max_{a \in A} sw(a, \overrightarrow{u})}{sw(x, \overrightarrow{u})}
$$

• Given voting rule f $dist(f) = \max_{\vec{S}} dist(f(\vec{S}), \vec{S})$

What is the lowest possible $dist(f)$? Which voting rule achieves it?

- Suppose we choose a:
	- \triangleright How much better is b ?

$$
\frac{sw(b,\vec{u})}{sw(a,\vec{u})} = \frac{1/2 + 2/3 + 1/3}{1/2 + 1/4 + 1/3} = \frac{18}{13}
$$

 \triangleright How much better is c?

$$
\frac{sw(c, \vec{u})}{sw(a, \vec{u})} = \frac{0 + \frac{1}{12} + \frac{1}{3}}{\frac{1}{2} + \frac{1}{4} + \frac{1}{3}} = \frac{5}{13}
$$

- Suppose we choose a :
	- \triangleright How much better can b be?

$$
\max_{\vec{u} \ge \overline{S}} \frac{sw(b, \vec{u})}{sw(a, \vec{u})} = \frac{1/3 + 1 + 1/3}{1/3 + 0 + 1/3} = \frac{5}{2}
$$

 \triangleright How much better can c be?

$$
\max_{\vec{u} \in \mathbb{R}} \frac{sw(c, \vec{u})}{sw(a, \vec{u})} = \frac{1/3 + 0 + 1/3}{1/3 + 0 + 1/3} = 1
$$

> Hence, $dist(a, \vec{v}) = \frac{5}{2}$

1 0 0

- Suppose we choose b :
	- \triangleright How much better can a be?

$$
\max_{\vec{u} \ge \overline{S}} \frac{sw(a, \vec{u})}{sw(b, \vec{u})} = \frac{1 + \frac{1}{3} + 1}{0 + \frac{1}{3} + 0} = 7
$$

1 0 0

- Suppose we choose c :
	- \triangleright How much better can a be?

$$
\max_{\vec{u} \in \mathbb{R}^2} \frac{sw(a, \vec{u})}{sw(c, \vec{u})} = \frac{1 + \frac{1}{2} + 1}{0 + 0 + 0} = inf
$$

Optimal Deterministic Distortion

- Theorem [Caragiannis, Procaccia, 2011; Caragiannis, Nath, Procaccia, Shah, 2017]
	- \triangleright For deterministic aggregation of ranked ballots, the optimal distortion is $\Theta(m^2)$
- Proof (lower bound):
	- \triangleright High-level approach:
		- \circ Take an arbitrary voting rule f
		- \circ Construct a preference profile \geq
		- o Let f choose a winner α on \geq
		- o Reveal a bad utility profile \vec{u} consistent with \vec{v} in which α is $\Omega(m^2)$ factor worse than the optimal alternative

- Proof (lower bound):
	- \triangleright Let f be any deterministic voting rule
	- > Consider $\overrightarrow{>}$ on the right
	- ≻ Case 1: $f(\overrightarrow{>}) = a_m$ \circ Infinite distortion. Why?

$$
\triangleright \text{ Case 2: } f(\vec{\gt}) = a_i \text{ for some } i < m
$$

 \circ Bad utility profile \vec{u} consistent with $\vec{>}$

- Voters in column *i* have utility $1/m$ for every alternative
- All other voters have utility $1/2$ for their top two alternatives

$$
\circ \text{ sw}(a_i, \vec{u}) = \frac{n}{m-1} \cdot \frac{1}{m}, \text{ sw}(a_m, \vec{u}) \ge \frac{n - n/(m-1)}{2} = \Omega(n)
$$

$$
\circ \text{ Distortion} = \Omega(m^2)
$$

 $n_{/(m-1)}$ voters per column a_1 a_2 … a_{m-1} a_m a_m ... a_m \bf{i}

- Proof (upper bound):
	- \triangleright Plurality rule: Select an alternative a that is the top choice of the most voters
	- \triangleright For this plurality winner:
		- \circ At least $\frac{n}{m}$ voters have a as their top choice (pigeonhole principle)
		- \circ Every voter has utility at least $\frac{1}{m}$ for their top choice (pigeonhole principle)
	- \triangleright Hence, for every consistent utility profile \vec{u} :

 \circ sw(a, $\vec{u}) \ge \frac{n}{m^2}$

 \circ sw $(a^*, \vec{u}) \leq n$ for every alternative a^*

 $\Rightarrow dist(a, \vec{r}) = O(m^2)$

Optimal Randomized Distortion

- Theorem [Boutilier, Caragiannis, Haber, Lu, Procaccia, and Sheffet, 2015]
	- \triangleright For randomized aggregation of ranked ballots, the optimal distortion is $O(\sqrt{m} \cdot \log^* m)$ but $\Omega(\sqrt{m})$
- Proof (lower bound):
	- \triangleright Same high-level approach:
		- o Take an arbitrary *randomized* voting rule
		- o Construct a preference profile ≻
		- \circ Let f choose a distribution x over alternatives
		- o Reveal a bad utility profile \vec{u} consistent with \vec{v} in which the expected social welfare under x is $\Omega(\sqrt{m})$ factor worse than the optimal social welfare

Randomized Rules

- Proof (lower bound):
	- \triangleright Let f be an arbitrary rule
- $^n\!/_{\!\sqrt{m}}$ voters per column a_1 a_2 ... $a_{\sqrt{m}}$ \bf{i}
- > Consider $\overrightarrow{>}$ on the right with \sqrt{m} special alternatives
- \triangleright f returns distribution x in which at least one special alternative (say a_i) must be chosen w.p. at most $\frac{1}{2}$ \overline{m}
- > Bad utility profile \vec{u} consistent with $\vec{>}$:
	- \circ All voters ranking a_i first have utility 1 for a_i
	- \circ All other voters have utility $\frac{1}{m}$ for every alternative
	- $\phi \circ \mathrm{sw}(a_i, \vec{u}) = \Theta\left(\binom{n}{\sqrt{m}}\right)$ but $s w(a, \vec{u}) \leq \binom{n}{m}$ for every other alternative a

$$
\circ \text{sw}(x,\vec{u}) \le \left(\frac{1}{\sqrt{m}}\right) \cdot \Theta\left(\frac{n}{\sqrt{m}}\right) + \left(1 - \frac{1}{\sqrt{m}}\right) \cdot \left(\frac{n}{m}\right) = O\left(\frac{n}{m}\right)
$$

o Hence, $\text{dist}(x,\vec{u}) = \Omega(\sqrt{m})$

Optimal Randomized Distortion

• Harmonic Rule

> The rule that achieves $O(\sqrt{m} \cdot \log^* m)$ distortion is complicated, but they propose a simpler harmonic rule that achieves $O(\sqrt{m \cdot \log m})$ distortion

Harmonic Rule

- Each voter *i* awards $\frac{1}{r}$ points to her r^{th} ranked alternative for every $r \in \{1, ..., m\}$
- Harmonic score of alternative a, denoted $hsc(a,\vec{r})$, is the total point awarded to a
- W.p. $\frac{1}{2}$, choose each $a \in A$ with probability proportional to $hsc(a, \vec{r})$
- W.p. $\frac{1}{2}$, choose each $a \in A$ uniformly at random

\triangleright Key proof idea: $\circ \mathit{hsc}(a, \overrightarrow{>}) \geq sw(a, \vec{u})$ for every a , while $\sum_a \widehat{h}$ sc $(a, \overrightarrow{>}) = O(\log m) \cdot \sum_a sw(a, \overrightarrow{u})$

Optimal Randomized Distortion

- Theorem [Ebadian, Kahng, Peters, Shah, 2022]
	- \triangleright For randomized aggregation of ranked ballots, the optimal distortion is $\Theta(\sqrt{m})$.

Metric Distortion

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

Assess quality using the underlying metric

Why The Metric?

& Bernard Grofman

ADVANCES IN THE SPATIAL THEORY OF VOTING

EDITED BY James M. Enelow AND Melvin J. Hinich

CAMBRIDGE

Why The Metric?

Metric Distortion

- 1. There exists an underlying metric d over voters and alternatives such that:
	- \triangleright Consistency (denoted $d \triangleright \overrightarrow{>}$) : $\forall a, b : a \succ_i b \Rightarrow d(i, a) \leq d(i, b)$
	- > Triangle inequality: $\forall x, y, z, d(x, y) + d(y, z) \ge d(x, z)$
	- \triangleright Risk-neutrality: For $x \in \Delta(A)$, $c_i(x) = \sum_d d(i, a) \cdot x(a)$
- 2. If we knew the costs, we would minimize the social cost \triangleright $\mathit{sc}(x, d) = \sum_{i \in N} d(i, x)$
- 3. Because this is impossible given the limited ranked information, we want to best approximate the social cost in the worst case.

Metric Distortion

Distortion

$$
dist(x, \vec{\gt}) = \sup_{d \; \rhd \; \vec{\gt}} \frac{sc(x, d)}{\min_{a \in A} sc(a, d)}
$$

• Given voting rule f $dist(f) = \max$ ≻ dist $(f(\vec{>}), \vec{>}$

What is the lowest possible distortion of deterministic and randomized rules? Which voting rules achieves it?

Lower Bound

[Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]

• A simple lower bound of 3 (deterministic rules) with just two candidates

- Question: What is the distortion of veto?
- · Unbounded!

• Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:

*Deterministic version of the harmonic rule,

which simply picks an alternative with the largest harmonic score

- The instance-optimal deterministic rule can be computed in polynomial time by solving a number of linear programs.
- Open question: What is the best distortion achievable by any positional scoring rule?

- Theorem [Munagala, Wang, 2019]:
	- **►** There exists a deterministic voting rule with distortion 2 + $\sqrt{5}$ \approx 4.236.
- Lemma [Munagala, Wang, 2019]: If f is a voting rule such that for every election, the domination graph of $f(\vec{>})$ has a perfect matching, then f has distortion equal to 3.

Domination Graph of Candidate a

Edge (i, j) exists when, in i's vote, a weakly defeats the top choice of j

Main Lemma

• Lemma [Munagala, Wang, 2019]: If f is a voting rule such that for every election, the domination graph of $f(\vec{>})$ has a perfect matching, then f has distortion equal to 3.

• Proof

• Let a be the optimal alternative

 $\mathcal{S}\mathcal{C}(a) = \sum_{i \in \mathbb{N}} d(i, a)$

 $\leq \sum_{i\in N} d(i, top(M(i))$ ($a \geq i$ top(M(i)) from the definition of the domination graph)

 $\leq \sum_{i\in N} d(i, b) + d(b, top(M(i))$ (triangle inequality)

 $\leq \sum_{i\in N} d(i, b) + d(b, top(i))$ (M is a perfect mathing)

 $\leq \sum_{i\in N} d(i, b) + d(b, i) + d(i, top(i))$ (triangle inequality)

$$
\leq \sum_{i\in N} d(i,b) + d(b,i) + d(i,b)
$$

 $\leq 3 \cdot \mathit{sc}(b)$

Optimal Distortion

- Theorem [Gkatzelis, Halpern, Shah, 2020]:
	- \triangleright There always exists an alternative whose domination graph admits a perfect matching, and PluralityMatching outputs any such alternative.
- Theorem [Kizilkaya, Kempe, 2022]:
	- \triangleright There always exists an alternative whose domination graph admits a perfect matching, and Plurality Veto outputs any such alternative.

Randomized Rules

- Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:
	- \triangleright No randomized rule has distortion better than 2.
	- ≻ RandomDictatorship has distortion $3 \frac{2}{n}$.
- Theorem [Kempe 2020a]:
	- > There is a randomized voting rule with access to only plurality votes with distortion $3 - \frac{2}{m}$.
- Theorem [Charikar, Ramakrishnan, 2022; Pulyassary, Swamy, 2021]:
	- \triangleright No randomized rule has distortion better than 2.112 for all m .
		- \circ Weaker lower bounds for fixed, finite m
- Theorem [Charikar, Ramakrishnan, Wang, Wu, 2024]:
	- \geq There is a randomized voting rules with distortion less than 2.753.
- Open question: What is the optimal metric distortion of randomized rules?