

CSCI 699

Voting: Committee Selection

Evi Micha

Credit for the slides : Nisarg Shah and Dominik Peters' Tutorial

Voting

- Set of n agents $N = \{1, \dots, n\}$
- Set of *m* candidates *M*

• Votes

- > Ranked ballots \succ_i (e.g., $a \succ_i b \succ_i c$)
- ≻ Cardinal utilities $u_i: M \to \mathbb{R}_{\geq 0}$ (less prominent)
- > Approval ballots $A_i \subseteq M$

○ Equivalent to binary cardinal utilities $c \in A_i \Leftrightarrow u_i(c) = 1$

Goal

- ≻ Single-winner voting: choose $c^* \in M$
- > Multiwinner voting: choose $S \subseteq M$ with $|S| \leq k$ (for given k)

"ABC" Voting

• Fairness

- Difficult to define non-trivial fairness notions for single-winner voting
 Can't give each individual/group "proportionally deserved" utility
- > Much more interesting for multiwinner voting
 - We'll focus on approval ballots, but many of the notions we'll see have been extended to ranked ballots and cardinal utilities
- Approval-Based Multiwinner Voting
 - > Each voter *i* approves a subset of candidates $A_i \subseteq M$
 - > A subset of candidates $W \subseteq M$, $|W| \leq k$ is selected
 - ≻ Each voter *i* gets utility $u_i(W) = |W \cap A_i|$

"ABC" Voting

Prominent Rules

- Thiele's Methods [1895]
 - ▶ Given a sequence $s = (s_1, s_2, ..., s_k)$, select a committee W that maximizes $\sum_{i \in N} s_1 + s_2 + \cdots + s_{u_i(W)}$

• Examples

> Approval voting (AV): s = (1, 1, 1, ..., 1)

 \circ Selects the k candidates with the highest total approvals

Approval Voting

<i>k</i> = 6						
	24 voters	1 voter	18 voters	12 voters	1 voter	12 voters
1:	+24	+1	+18	+12	+1	+12
2:	+24	+1	+18	+12	+1	+12
3:	+24	+1	+18	+12	+1	+12
4:	+24	+1	+18	+12	+1	+12
5:	+24	+1	+18	+12	+1	+12
6:	+24	+1	+18	+12	+1	+12

Prominent Rules

- Thiele's Methods [1895]
 - ▶ Given a sequence $s = (s_1, s_2, ..., s_k)$, select a committee W that maximizes $\sum_{i \in N} s_1 + s_2 + \cdots + s_{u_i(W)}$

• Examples

- > Approval voting (AV): s = (1, 1, 1, ..., 1)
 - \circ Selects the k candidates with the highest total approvals
- > Chamberlin-Courant (CC): s = (1,0,0, ... 0)
 - Maximizes the number of voters for whom at least one approved candidate is selected

Chamberlin-Courant

k = 6						
	()	()		·γ		
	24 voters	1 voter	18 voters	12 voters	1 voter	12 voters
1:	+24	+1	+18	+12	+1	+12
2:	+0	+0	+0	+0	+0	+0
3:	+0	+0	+0	+0	+0	+0
4:	+0	+0	+0	+0	+0	+0
5:	+0	+0	+0	+0	+0	+0
6:	+0	+0	+0	+0	+0	+0

Prominent Rules

- Thiele's Methods [1895]
 - > Given a sequence $s = (s_1, s_2, ..., s_k)$, select a committee W that maximizes $\sum_{i \in N} s_1 + s_2 + \cdots + s_{u_i(W)}$

• Examples

> Approval voting (AV): s = (1, 1, 1, ..., 1)

 \circ Selects the k candidates with the highest total approvals

> Chamberlin-Courant (CC): s = (1,0,0, ... 0)

 Maximizes the number of voters for whom at least one approved candidate is selected

> Proportional Approval Vorting (PAV): $s = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k})$

o In between AC and CC, but why exactly harmonic scores?

Proportional Approval Voting

k = 6						
		()	()			ι)
	24 voters	1 voter	18 voters	12 voters	1 voter	12 voters
1:	+24	. 1	± 18	± 10	+1	. 10
	127	+T	+10	TTT	• •	+12
2:	+12	+0.5	+9	+6	+0.5	+6
3:	+8	+0.33	+6	+4	+0.33	+4
4:	+6	+0.25	+4.5	+3	+0.25	+3
5:	+4.8	+0.20	+3.6	+2.4	+0.20	+2.4
6:	+4	+0.16	+3	+2	+0.16	+2

Why Harmonic Numbers?

6 voters 4 voters 10 voters 2 voters

k = 11

- "Proportionality"
 - ➤ We should select 3 , 2 , 5 , 1

Party-List PR

- Party-list instances
 - For all *i*, *j* ∈ *N*: either $A_i = A_j$ or $A_i \cap A_j = \emptyset$ For all *i* ∈ *N*: $|A_i| \ge k$
- Lower quota for party-list instances
 - ▶ For every party-list instance, $u_i(W) \ge \lfloor k \cdot {n_i}/n \rfloor$ for all $i \in N$, where $n_i = |\{j \in N : A_j = A_i\}|$

Party-List PR

- AV violates lower quota for party-list instances
 - > 4 candidates $\{a, b, c, d\}, k = 3$
 - > 2 voters approve {*a*, *b*, *c*} and 1 voter approves *d*

Party-List PR

- CC violates lower quota for party-list instances
 - > 6 candidates $\{a, b, c, d\}, k = 3$
 - > 2 voters approve $\{a, b\}$, 1 voter approves $\{c\}$, 1 voter approves $\{d\}$

Intuition Behind PAV

k = 11

- Party-list PR
 - > We should select $3 \odot$, $2 \odot$, $5 \odot$, $1 \odot$
 - > PAV would have the desired result because:
 - 3rd, 2nd, 5th, 1st, 1st, have the same marginal contribution = 2
 - We'll see a formal proof of PAV satisfying something stronger later
 - PAV known to be the only Thiele's method (and subject to additional axioms the only ABC rule) achieving this

Fairness for General Instances

- Issues
 - No well-separated "groups" of voters
 - A subset of voters may not be "fully cohesive" (having identical approval sets)
- We want to provide a utility guarantee to
 - ...every possible subset (group) of voters that is...
 - ...sufficiently large and cohesive and...
 - > ...their guarantee scales with their size and cohesiveness

Fairness for General Instances

- ≻ For all $S \subseteq N$
- ▶ If $|S| \ge \ell \cdot n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
- ≻ Then $|W \cap_{i \in S} A_i| \ge \ell$
- Question: Is this property always satisfiable?

First Attempt

- ≻ For all $S \subseteq N$
- > If $|S| \ge \ell \cdot n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
- ▶ Then $|W \cap_{i \in S} A_i| \ge \ell$

 $A_1 \cap A_2 = a$ $A_2 \cap A_4 = b$ $A_1 \cap A_3 = c$ $A_3 \cap A_4 = d$

Justified Representation (JR)

- Definition: W satisfies JR if
 - > For all S ⊆ N
 - > If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
 - ≻ Then $u_i(W) \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
 - > Question: Find all the committees that satisfy JR for k = 2

Justified Representation (JR)

- Definition: W satisfies JR if
 - > For all S ⊆ N
 - > If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
 - ≻ Then $u_i(W) \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
 - ▶ Question: Can we ask $u_i(W) \ge 1$ for all $i \in S$?

Justified Representation (JR)

• Approval Voting violates JR

Justified Representation

- Theorem: Chamberlin-Courant satisfies JR
- Proof:
- Suppose CC selects W, which violates JR
- Then, there is a group $S \subseteq N$ such that
 - $|S| \geq n/k$
 - > No $i \in S$ is "covered" $(u_i(W) = 0 \forall i \in S)$
 - ➤ There is a candidate $c^* \in \cap_i A_i$
- Since W covers less than n voters in total, some $c \in W$ covers (is approved by) less than n/k voters
- Replacing c with c* gives a new committee that covers strictly more voters, a contradiction to W already maximizing this metric!

- Definition: W satisfies EJR if
 - ▶ For all $S \subseteq N$ and $\ell \in \{1, ..., k\}$
 - ≻ If $|S| \ge \ell \cdot n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
 - ▶ Then $u_i(W) \ge \ell$ for some $i \in S$
 - "If a group deserves l candidates and has l commonly approved candidates, then not every member should get less than l utility"
 - > JR imposes this but only for $\ell = 1$, so EJR \Rightarrow JR

- Question: What is a committee that satisfies EJR? Is there a committee that satisfies JR but not EJR?
- k=4

- Question: What is the relationship between JR, EJR and proportionality in the case of party lists?
- 1. $JR \Rightarrow party-list PR$
- 2. $EJR \implies party-list PR$
- 3. None
- 4. Both

Chamberlin-Courant violates EJR

- Theorem [Aziz et al. (2016)]: PAV satisfies EJR
- Proof:
- Suppose PAV selects W, which violates EJR $PAV(W) = \sum_{i \in N} 1 + \frac{1}{2} + \dots + \frac{1}{u_i(W)}$
- Then, there is a group $S \subseteq N$ and $\ell \in \{1, ..., k\}$ such that $|S| \ge \ell \cdot n/k$ $u_i(W) < \ell, \forall i \in S$ $|\cap_{i \in S} A_i| \ge \ell \Rightarrow$ there exists $c^* \in \cap_{i \in S} A_i \setminus W$ (Why?)
- Consider $\widetilde{W} = W \cup \{c^*\}$ $\Rightarrow PAV(\widetilde{W}) \ge PAV(W) + |S| \cdot \frac{1}{\ell} \ge PAV(W) + \frac{n}{k}$
- Claim: Can remove some $c \in \widetilde{W}$ and lower score by $< \frac{n}{k}$

- Claim: Can remove some $c \in \widetilde{W}$ and lower score by $< \frac{n}{k}$
- Proof:
 - > Suffices to prove that average reduction across $c \in \widetilde{W}$ is less than $\frac{n}{k}$
 - ▶ Reduction when removing $c \in \widetilde{W} = \sum_{i:c \in A_i} \frac{1}{u_i(\widetilde{W})}$
 - > Average reduction: $\frac{1}{k+1} \cdot \sum_{c \in \widetilde{W}} \sum_{i:c \in A_i} \frac{1}{u_i(\widetilde{W})} = \frac{1}{k+1} \cdot \sum_{i \in N} \sum_{c \in A_i \cap \widetilde{W}} \frac{1}{u_i(\widetilde{W})}$ $= \frac{1}{k+1} \cdot \sum_{i \in N} 1$ $= \frac{n}{k+1} < \frac{n}{k}$

Computation of PAV

- Computing PAV is NP-complete
- What about a greedy approximation?
 - Sequential PAV

 $\circ W \leftarrow \emptyset$

- \circ while |W| < k do
 - Find c which maximizes $PAV(W \cup \{c\})$
 - $W \leftarrow W \cup \{c\}$
- > Achieves at least $\left(1 \frac{1}{e}\right)$ fraction of optimal PAV score

 $\,\circ\,$ PAV score is a submodular function

But fails to satisfy EJR

Computation of PAV

- In practice, exact PAV solution can be computed via a BILP
- Binary variables:

y_c → Is candidate *c* selected? *x_{i,ℓ}* → Is $u_i({c: y_c = 1}) \ge ℓ$?

• Maximize
$$\sum_{i \in N} \sum_{\ell=1}^{k} \frac{1}{\ell} \cdot x_{i,\ell}$$

subject to
$$\sum_{\ell=1}^{k} x_{i,\ell} = \sum_{c \in A_i} y_c$$
 for all i
 $\sum_c y_c = k$
 $y_c, x_{i,\ell} \in \{0,1\}$ for all i, ℓ, c

← Why does this work?

Is EJR enough?

k = 12

Fully Justified Representation (FJR)

- **Definition**: *W* satisfies FJR if
 - For all S ⊆ N, T ⊆ M and β ∈ {1, ..., k}
 - > If $|S| \ge |T| \cdot n/k$ (large) and $u_i(T) \ge \beta$, ∀ $i \in S$ (cohesive)
 - ≻ Then $u_i(W) \ge \beta$ for some $i \in S$
 - > Equivalently: $\max_{i \in S} u_i(W) \ge \min_{i \in S} u_i(T)$
 - > "If a group deserves ℓ candidates and can propose a set of ℓ candidates from which each member gets at least β utility, then not every member should get less than β utility"
 - ► EJR imposes this but only for β = |T|, which would imply T ⊆ ∩_{i∈S} A_i, so we just wrote |∩_{i∈S} A_i| ≥ ℓ
 - ≻ FJR \Rightarrow EJR
- Bad news: PAV (and every other known "natural" rule) violates FJR

Fully Justified Representation (FJR)

- FJR is satisfiable via a simple greedy rule
- Greedy Cohesive Rule (GCR):
 - $\succ W \leftarrow \emptyset$
 - > $N^a \leftarrow N$ ("active voters")
 - while ∃β > 0, S ⊆ N^a, T ⊆ M \ W
 s.t. |S| ≥ |T| · ⁿ/_k and min u_i(T) ≥ β do
 Pick such (β, S, T) with the highest β (break ties arbitrarily)
 W ← W ∪ T, N^a ← N^a \ S
 return W
- Greedily find the most cohesive group of voters and add their suggested group of candidates

Fully Justified Representation (FJR)

- Theorem[Peters et al. (2022)]: Greedy Cohesive Rule satisfies FJR
- **Proof:** Suppose for contradiction that Greedy Cohesive Rule does not satisfy FJR
 - > Then, there is a group $S \subseteq N$ and $T \subseteq M$ such that
 - $|S| \ge |T| \cdot n/k$ and $\min_{i \in S} u_i(T) > \max_{i \in S} u_i(W)$
- Let i^* be the first agent in S that was removed from N^a because of (β', S', T')
- Let W' be the committee right before T' is added; until then S was available
- From the definition of the algorithm, this means

$$\min_{i \in S'} u_i(T') \ge \min_{i \in S} u_i(T \setminus T \cap W')$$
(1)

• Therefore, $\min_{i \in S} u_i(T) = \min_{i \in S} [u_i(T \setminus T \cap W') + u_i(T \cap W')]$

$$\leq^{(1)} \min_{i \in S'} u_i(T') + \min_{i \in S} u_i(T \cap W') \le u_{i^*}(T') + u_{i^*}(T \cap W') \le u_{i^*}(W) \le \max_{i \in S} u_i(W)$$

• which is a contradiction

Is FJR enough?

k = 12

Core

- Definition: W satisfies core if
 - > For all S ⊆ N and T ⊆ M
 - > If $|S| \ge |T| \cdot n/k$ (large)
 - ▶ Then $u_i(W) \ge u_i(T)$ for some $i \in S$
 - "If a group can afford T, then T should not be a strict Pareto improvement for the group"
 - > FJR only imposes $\max_{i \in S} u_i(W) \ge \min_{i \in S} u_i(T)$, so core \Rightarrow FJR

Major open question

> For ABC voting, does there always exist a committee in the core?

Notes

- Other fairness definitions
 - > EJR+, SJR, AJR, PJR, PRJ+, UJR, CS, proportionality degree, ...
 - > See <u>Justified Representation wiki</u> for more details

 $SJR \rightarrow AJR \rightarrow EJR \rightarrow PJR \rightarrow UJR$ $\uparrow \qquad \uparrow \qquad JR$ $CS \rightarrow FJR \rightarrow \uparrow \qquad \uparrow$ $EJR+ \rightarrow \uparrow \qquad \rightarrow PJR+$