

Voting: Committee Selection

Evi Micha

Credit for the slides : Nisarg Shah and Dominik Peters' Tutorial

Voting

- Set of *n* agents $N = \{1, ..., n\}$
- Set of m candidates M

• Votes

- > Ranked ballots \succ_i (e.g., $a \succ_i b \succ_i c$)
- > Cardinal utilities u_i : M → $\mathbb{R}_{\geq 0}$ (less prominent)
- ≻ Approval ballots A_i ⊆ M

 \circ Equivalent to binary cardinal utilities $c \in A_i \Leftrightarrow u_i(c) = 1$

• Goal

- > Single-winner voting: choose c^* ∈ M
- ≻ Multiwinner voting: choose $S \subseteq M$ with $|S| \leq k$ (for given k)

"ABC" Voting

• Fairness

- \triangleright Difficult to define non-trivial fairness notions for single-winner voting o Can't give each individual/group "proportionally deserved" utility
- \triangleright Much more interesting for multiwinner voting
	- \circ We'll focus on approval ballots, but many of the notions we'll see have been extended to ranked ballots and cardinal utilities
- Approval-Based Multiwinner Voting
	- ≻ Each voter *i* approves a subset of candidates A_i ⊆ M
	- \triangleright A subset of candidates $W \subseteq M$, $|W| \leq k$ is selected
	- > Each voter *i* gets utility $u_i(W) = |W \cap A_i|$

"ABC" Voting

Prominent Rules

- Thiele's Methods [1895]
	- \triangleright Given a sequence $s = (s_1, s_2, ... s_k)$, select a committee W that maximizes $\sum_{i \in N} s_1 + s_2 + \cdots + s_{u_i(W)}$

• Examples

 \triangleright Approval voting (AV): $s = (1,1,1, ... 1)$

 \circ Selects the k candidates with the highest total approvals

Approval Voting

Prominent Rules

- Thiele's Methods [1895]
	- \triangleright Given a sequence $s = (s_1, s_2, ... s_k)$, select a committee W that maximizes $\sum_{i\in N} s_1 + s_2 + \cdots + s_{u_i(W)}$
- Examples
	- \triangleright Approval voting (AV): $s = (1,1,1, ... 1)$
		- \circ Selects the k candidates with the highest total approvals
	- \triangleright Chamberlin-Courant (CC): $s = (1,0,0,...,0)$
		- o Maximizes the number of voters for whom at least one approved candidate is selected

Chamberlin-Courant

Prominent Rules

- Thiele's Methods [1895]
	- \triangleright Given a sequence $s = (s_1, s_2, ... s_k)$, select a committee W that maximizes $\sum_{i \in N} s_i + s_2 + \cdots + s_{u_i(W)}$

• Examples

- \triangleright Approval voting (AV): $s = (1,1,1, ... 1)$
	- \circ Selects the k candidates with the highest total approvals
- \triangleright Chamberlin-Courant (CC): $s = (1,0,0,...,0)$
	- o Maximizes the number of voters for whom at least one approved candidate is selected
- > Proportional Approval Vorting (PAV): $s = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k})$
	- o In between AC and CC, but why exactly harmonic scores?

Proportional Approval Voting

Why Harmonic Numbers?

6 voters and 4 voters

 $k = 11$

- "Proportionality"
	- \triangleright We should select 3 , 2 , 5 , 5 , 1

Party-List PR

- Party-list instances
	- ≻ For all $i, j \in N$: either $A_i = A_j$ or $A_i \cap A_j = \emptyset$
	- ≻ For all $i \in N$: $|A_i| \geq k$

• Lower quota for party-list instances

 \triangleright For every party-list instance, $u_i(W) \geq \left\lfloor k \cdot {}^{n_i}\!/_{n} \right\rfloor$ for all $i \in N$, where $n_i = |\{j \in N : A_i = A_i\}|$

Party-List PR

- AV violates lower quota for party-list instances
	- > 4 candidates $\{a, b, c, d\}, k = 3$
	- \triangleright 2 voters approve $\{a, b, c\}$ and 1 voter approves d

Party-List PR

- CC violates lower quota for party-list instances
	- \triangleright 6 candidates $\{a, b, c, d\}, k = 3$
	- > 2 voters approve $\{a, b\}$, 1 voter approves $\{c\}$, 1 voter approves $\{d\}$

Intuition Behind PAV

 $k = 11$

- Party-list PR
	- \triangleright We should select 3 , 2 , 5 , 5 , 1
	- \triangleright PAV would have the desired result because:
		- \circ 3rd, 2nd, 5th, 1st, have the same marginal contribution = 2
		- o We'll see a formal proof of PAV satisfying something stronger later
		- o PAV known to be the only Thiele's method (and subject to additional axioms the only ABC rule) achieving this

Fairness for General Instances

- Issues
	- \triangleright No well-separated "groups" of voters
	- \triangleright A subset of voters may not be "fully cohesive" (having identical approval sets)
- We want to provide a utility guarantee to
	- \triangleright ... every possible subset (group) of voters that is...
	- ^Ø …sufficiently large and cohesive and…
	- \triangleright ...their guarantee scales with their size and cohesiveness

Fairness for General Instances

- \triangleright For all $S \subseteq N$
- > If $|S| \ge \ell \cdot {^n}/_k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
- > Then $|W \bigcap_{i \in S} A_i| \geq \ell$
- \triangleright Question: Is this property always satisfiable?

First Attempt

- \triangleright For all $S \subseteq N$
- > If $|S| \ge \ell \cdot {^n}/_k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
- > Then $|W \bigcap_{i \in S} A_i| \geq \ell$

 \triangleright A₁ \cap A₃ = c

 \triangleright A₃ \cap A₄ = d

Justified Representation (JR)

- Definition: W satisfies JR if
	- \triangleright For all $S \subseteq N$
	- > If $|S| \geq n/k$ (large) and $|\bigcap_{i \in S} A_i| \geq 1$ (cohesive)
	- \triangleright Then $u_i(W) \geq 1$ for some $i \in S$
	- \triangleright "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
	- \triangleright Question: Find all the committees that satisfy JR for $k = 2$

Justified Representation (JR)

- Definition: W satisfies JR if
	- \triangleright For all $S \subseteq N$
	- > If $|S| \geq n/k$ (large) and $|\bigcap_{i \in S} A_i| \geq 1$ (cohesive)
	- \triangleright Then $u_i(W) \geq 1$ for some $i \in S$
	- \triangleright "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
	- > Question: Can we ask $u_i(W) \geq 1$ for all $i \in S$?

Justified Representation (JR)

• Approval Voting violates JR

Justified Representation

- Theorem: Chamberlin-Courant satisfies JR
- Proof:
- Suppose CC selects W , which violates JR
- Then, there is a group $S \subseteq N$ such that
	- $\vert S \vert \geq \frac{n}{k}$
	- > No *i* ∈ *S* is "covered" $(u_i(W) = 0 \forall i \in S)$
	- > There is a candidate c^* ∈ $\cap_i A_i$
- Since W covers less than n voters in total, some $c \in W$ covers (is approved by) less than $n_{\mathcal{N}_k}$ voters
- Replacing c with c^* gives a new committee that covers strictly more voters, a contradiction to W already maximizing this metric!

- Definition: W satisfies FJR if
	- > For all $S \subseteq N$ and $\ell \in \{1, ..., k\}$
	- > If $|S| \ge \ell \cdot {^n}/_k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
	- \triangleright Then $u_i(W) \geq \ell$ for some $i \in S$
	- \triangleright "If a group deserves ℓ candidates and has ℓ commonly approved candidates, then not every member should get less than ℓ utility"
	- > JR imposes this but only for $\ell = 1$, so EJR ⇒ JR

- Question: What is a committee that satisfies EJR? Is there a committee that satisfies JR but not EJR?
- $k=4$

- Question: What is the relationship between JR, EJR and proportionality in the case of party lists?
- 1. JR \Rightarrow party-list PR
- 2. EJR \Rightarrow party-list PR
- 3. None
- 4. Both

• Chamberlin-Courant violates EJR

- Theorem [Aziz et al. (2016)]: PAV satisfies EJR
- Proof:
- Suppose PAV selects W , which violates EJR > $PAV(W) = \sum_{i \in N} 1 + \frac{1}{2}$ $+ \cdots + \frac{1}{\cdots}$ u_{i} (W
- Then, there is a group $S \subseteq N$ and $\ell \in \{1, ..., k\}$ such that $\vert S \vert \geq \ell \cdot {^n/}_k$ $\triangleright u_i(W) < \ell, \ \forall i \in S$ $\triangleright \ \vert \cap_{i \in S} A_i \vert \geq \ell \Rightarrow$ there exists $c^* \in \cap_{i \in S} A_i \setminus W$ (Why?)
- Consider $\widetilde{W} = W \cup \{c^*\}$ \Rightarrow $PAV(\widetilde{W}) \geq PAV(W) + |S| \cdot \frac{1}{\ell} \geq PAV(W) + \frac{n}{k}$
- Claim: Can remove some $c \in \widetilde{W}$ and lower score by $< \frac{n}{L}$ \boldsymbol{k}

- Claim: Can remove some $c \in \widetilde{W}$ and lower score by $\lt \frac{n}{\sqrt{n}}$ \boldsymbol{k}
- Proof:
	- \triangleright Suffices to prove that average reduction across $c\in \widetilde{W}$ is less than $\frac{n}{k}$
	- ≻ Reduction when removing $c \in \widetilde{W} = \sum_{i: c \in A_i} \frac{1}{u_i(t)}$ $u_{\widetilde t}(\widetilde W$

$$
\sum_{k=1}^{\infty} \text{Average reduction:}
$$
\n
$$
\frac{1}{k+1} \cdot \sum_{c \in \tilde{W}} \sum_{i:c \in A_i} \frac{1}{u_i(\tilde{W})} = \frac{1}{k+1} \cdot \sum_{i \in N} \sum_{c \in A_i \cap \tilde{W}} \frac{1}{u_i(\tilde{W})}
$$
\n
$$
= \frac{1}{k+1} \cdot \sum_{i \in N} 1
$$
\n
$$
= \frac{n}{k+1} < \frac{n}{k}
$$

Computation of PAV

- Computing PAV is NP-complete
- What about a greedy approximation?
	- \triangleright Sequential PAV

 \circ $W \leftarrow \emptyset$

- \circ while $|W| < k$ do
	- Find c which maximizes $PAV(W \cup \{c\})$
	- $W \leftarrow W \cup \{c\}$
- ≻ Achieves at least $\left(1 \frac{1}{2}\right)$ $\frac{1}{e}$) fraction of optimal PAV score

o PAV score is a submodular function

 \triangleright But fails to satisfy EJR

Computation of PAV

- In practice, exact PAV solution can be computed via a BILP
- Binary variables:

 \triangleright $y_c \rightarrow$ Is candidate c selected? $\triangleright x_{i,\ell} \rightarrow \text{Is } u_i(\{c: y_c = 1\}) \geq \ell$?

• Maximize
$$
\sum_{i \in N} \sum_{\ell=1}^{k} \frac{1}{\ell} \cdot x_{i,\ell}
$$

subject to
$$
\sum_{\ell=1}^{k} x_{i,\ell} = \sum_{c \in A_i} y_c
$$
 for all i
 $\sum_{c} y_c = k$
 $y_c, x_{i,\ell} \in \{0,1\}$ for all i, ℓ, c

← Why does this work?

Is EJR enough?

 $k = 12$

Fully Justified Representation (FJR)

- Definition: W satisfies FJR if
	- \triangleright For all $S \subseteq N$, $T \subseteq M$ and $β \in \{1, ..., k\}$
	- \triangleright If $|S| \ge |T| \cdot \frac{n}{k}$ (large) and $u_i(T) \ge \beta$, $\forall i \in S$ (cohesive)
	- \triangleright Then $u_i(W) \geq \beta$ for some $i \in S$
	- > Equivalently: $\max_{i \in S} u_i(W) \ge \min_{i \in S} u_i(T)$
	- \triangleright "If a group deserves ℓ candidates and can propose a set of ℓ candidates from which each member gets at least β utility, then not every member should get less than β utility"
	- ► EJR imposes this but only for $\beta = |T|$, which would imply $T \subseteq$ $\cap_{i\in S} A_i$, so we just wrote $|\cap_{i\in S} A_i| \geq \ell$
	- ^Ø FJR ⇒ EJR
- Bad news: PAV (and every other known "natural" rule) violates FJR

Fully Justified Representation (FJR)

- FJR is satisfiable via a simple greedy rule
- Greedy Cohesive Rule (GCR):
	- \triangleright W $\leftarrow \emptyset$
	- $\triangleright N^a \leftarrow N$ ("active voters")
	- \triangleright while ∃β > 0 , $S \subseteq N^a$, $T \subseteq M \setminus W$ s.t. $|S| \geq |T| \cdot \frac{n}{k}$ and $\min_{i \in S} u_i(T) \geq \beta$ do \circ Pick such (β , S, T) with the highest β (break ties arbitrarily) $\circ W \leftarrow W \cup T$, $N^a \leftarrow N^a \setminus S$ \triangleright return W
- Greedily find the most cohesive group of voters and add their suggested group of candidates

Fully Justified Representation (FJR)

- Theorem[Peters et al. (2022)]: Greedy Cohesive Rule satisfies FJR
- Proof: Suppose for contradiction that Greedy Cohesive Rule does not satisfy FJR
	- \triangleright Then, there is a group $S \subseteq N$ and $T \subseteq M$ such that
	- > $|S|$ ≥ $|T| \cdot \frac{n}{k}$ and $\min_{i \in S} u_i(T)$ > $\max_{i \in S} u_i(W)$
- Let i^* be the first agent in S that was removed from N^a because of (β', S', T')
- Let W' be the committee right before T' is added; until then S was available
- From the definition of the algorithm, this means

$$
\min_{i \in S'} u_i(T') \ge \min_{i \in S} u_i(T \setminus T \cap W') \tag{1}
$$

• Therefore, min $\min_{i \in S} u_i(T) = \min_{i \in S} [u_i(T \setminus T \cap W') + u_i(T \cap W')$

$$
\leq^{(1)} \min_{i \in S'} u_i(T') + \min_{i \in S} u_i(T \cap W') \leq u_{i^*}(T') + u_{i^*}(T \cap W') \leq u_{i^*}(W) \leq \max_{i \in S} u_i(W)
$$

which is a contradiction

Is FJR enough?

 $k = 12$

Core

- Definition: W satisfies core if
	- \triangleright For all $S \subseteq N$ and $T \subseteq M$
	- > If $|S| \ge |T| \cdot \frac{n}{k}$ (large)
	- \triangleright Then $u_i(W) \ge u_i(T)$ for some $i \in S$
	- \triangleright "If a group can afford T, then T should not be a strict Pareto improvement for the group"
	- \triangleright FJR only imposes max $i \in S$ $u_{i}(W) \geq \min\limits_{i \in S} u_{i}(T)$, so core \Rightarrow FJR

• **Major open question**

 \triangleright For ABC voting, does there always exist a committee in the core?

Notes

- Other fairness definitions
	- ^Ø EJR+, SJR, AJR, PJR, PRJ+, UJR, CS, proportionality degree, …
	- **> See Justified Representation wiki for more details**

$$
SJR \rightarrow AJR \rightarrow EJR \rightarrow PJR \rightarrow UJR
$$

\n
$$
\uparrow \qquad \uparrow \qquad \rightarrow JR
$$

\n
$$
CS \rightarrow FJR \rightarrow \uparrow \qquad \uparrow
$$

\n
$$
\uparrow \qquad \uparrow
$$

\n
$$
\uparrow \qquad \uparrow
$$

\n
$$
EJR + \rightarrow \uparrow \qquad \rightarrow PJR +
$$