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Cake-Cutting



Cake-Cutting
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• A heterogeneous divisible good
Ø Heterogeneous = same part may be 

valued differently by different agents
Ø Divisible = can be divided between agents

• Cake 𝐶 = [0,1]
Ø Almost without loss of generality

• Agents 𝑁 = {1,… , 𝑛}

• Piece of cake 𝑋 ⊆ [0,1] = finite union of disjoint intervals 

• Allocation 𝐴 = (𝐴!, … , 𝐴")
Ø Partition of the cake where each 𝐴! is a piece of the cake



Agent	Valuations
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• Valuation of agent 𝑖 is given by an integrable value density 
function 𝑓#: 0,1 → ℝ$
Ø Her value for a piece of cake 𝑋 is 𝑉! 𝑋 = ∫"∈$ 𝑓! 𝑥 𝑑𝑥

• Two key properties
Ø Additive: For 𝑋 ∩ 𝑌 = ∅,

 𝑉! 𝑋 + 𝑉! 𝑌 = 𝑉! 𝑋 ∪ 𝑌

Ø Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑉! 𝑌 = 𝜆𝑉!(𝑋)

• WLOG
Ø Normalized: 𝑉! 0,1 = 1

β𝛼 + 𝛽

𝛼 𝛽

𝛼

𝜆𝛼



Complexity
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• Inputs are functions
Ø Infinitely many bits may be needed to fully 

represent the input
Ø Query complexity is more useful

• Robertson-Webb Model
Ø Eval!(𝑥, 𝑦) returns 𝑣! 𝑥, 𝑦
Ø Cut!(𝑥, 𝛼) returns 𝑦 such that 𝑣! 𝑥, 𝑦
= 𝛼

𝑥 𝑦

𝛼

eval output

cut output



Fairness	Goals
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• What kind of fairness might we want from an allocation 𝐴?

• Proportionality (Prop):

∀𝑖 ∈ 𝑁:	𝑉# 𝐴# ≥
1
𝑛

• Envy-Freeness (EF):

∀𝑖, 𝑗 ∈ 𝑁: 𝑉# 𝐴# ≥ 𝑉#(𝐴%)

• Equitability (EQ):
∀𝑖, 𝑗 ∈ 𝑁: 𝑉# 𝐴# = 𝑉%(𝐴%) Only makes 

sense with 
normalization



Example
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• Agent 1 wants [0, ⁄% &] 
uniformly and does not want 
anything else

• Agent 2 wants the entire cake 
uniformly

• Agent 3 wants [ ⁄' & , 1] 
uniformly and does not want 
anything else

• Value density functions

0 "1 3 1"2 3

1

2

3



Example
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• Consider the following 
allocation

• 𝐴% = 0, ⁄% ( ⇒ 𝑣% 𝐴% = ⁄% &

• 𝐴' = ⁄% ( , ⁄) ( ⇒ 𝑣' 𝐴' =
⁄* (

• 𝐴& = ⁄) ( , 1 ⇒ 𝑣& 𝐴& = ⁄% &

• The allocation is proportional, 
but not envy-free or equitable

• Value density functions

0 "1 3 1"2 3

1

2

3



Example
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• Consider the following allocation

• 𝐴% = 0, ⁄% & ⇒ 𝑣% 𝐴% = ⁄% '

• 𝐴' = ⁄% & , ⁄( & ⇒ 𝑣' 𝐴' = ⁄' )

• 𝐴) = ⁄( & , 1 ⇒ 𝑣) 𝐴) = ⁄% '

• The allocation is proportional and 
envy-free, but not equitable

• Value density functions

0 "1 3 1"2 3

1

2

3



Example
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• Consider the following 
allocation

• 𝐴% = 0, ⁄% + ⇒ 𝑣% 𝐴% = ⁄& +

• 𝐴' = ⁄% + , ⁄, + ⇒ 𝑣' 𝐴' =
⁄& +

• 𝐴& = ⁄, + , 1 ⇒ 𝑣& 𝐴& = ⁄& +

• The allocation is proportional, 
envy-free, and equitable

• Value density functions

0 "1 3 1"2 3

1

2

3



Relations	Between	Fairness	
Desiderata
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• Prop: ∀𝑖 ∈ 𝑁: 𝑉# 𝐴# ≥ ⁄1 𝑛
• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑉# 𝐴# ≥ 𝑉# 𝐴%

• Question: 
What is the relation between proportionality and EF?

1. Prop ⇒ EF
2. EF ⇒ Prop
3. Equivalent
4. Incomparable



Relations	Between	Fairness	
Desiderata
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• Envy-freeness implies proportionality
Ø Summing 𝑣! 𝐴! ≥ 𝑣! 𝐴*  over all 𝑗 gives proportionality

• For 2 agents, proportionality also implies envy-freeness
Ø Hence, they are equivalent.

• Equitability is incomparable to proportionality and envy-
freeness
Ø E.g. if each agent has value 0 for her own allocation and 1 for the 

other agent’s allocation, it is equitable but not proportional or envy-
free.



Existence
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• Theorem [Alon, 1987]
Suppose the value density function 𝑓- of each agent valuation 𝑣- is 
continuous. Then, we can cut the cake at 𝑛' − 𝑛 places and 
rearrange the 𝑛' − 𝑛 + 1 intervals into 𝑛 pieces 𝐴%, … , 𝐴. such 
that

𝑣- 𝐴/ = 31 𝑛 , ∀𝑖, 𝑗 ∈ 𝑁

• This is called a “perfect partition”
Ø It is trivially envy-free (thus proportional) and equitable

• As we will later see, this cannot be found with finitely many 
queries in Robertson-Webb model
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Proportionality



CUT-AND-CHOOSE
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• Algorithm for 𝑛 = 2 agents

• Agent 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉! 𝑋 = 𝑉! 𝑌 = ⁄1 2

• Agent 2 chooses the piece she prefers.

• This is EF and therefore proportional.
Ø Why?



Robertson-Webb	Model
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• Two types of queries to an agent’s valuation function 𝑉#
Ø Eval!(𝑥, 𝑦) returns 𝑉! 𝑥, 𝑦
Ø Cut!(𝑥, 𝛼) returns the smallest 𝑦 such that 𝑉! 𝑥, 𝑦 = 𝛼
o If no such 𝑦 exists, then it returns 1

• Question: 
Ø How many queries are needed to find an EF allocation when 𝑛 = 2?

𝑥 𝑦

𝛼eval output

cut output



DUBINS-SPANIER
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• Protocol for finding a proportional allocation for 𝑛 agents

• Referee starts with a knife at 0 
• Referee continuously moves the knife to the right
• Repeat 𝑛 − 1 times: Whenever the piece to the left of knife 

is worth 1/𝑛 to a agent, the agent shouts “stop”, gets the 
piece, and exits.

• The last agent gets the remaining piece.



DUBINS-SPANIER

18

1/3 1/3 ≥ 1/3

CSCI 699- Evi Micha



DUBINS-SPANIER
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• Moving a knife continuously is not really needed.

• At each stage, we can ask each remaining agent a cut query 
to mark his 1/𝑛 point in the remaining cake.

• Move the knife to the leftmost mark.



DUBINS-SPANIER
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DUBINS-SPANIER
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⁄1 3



DUBINS-SPANIER

CSCI 699- Evi Micha 22

⁄1 3 ⁄1 3



DUBINS-SPANIER
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⁄1 3 ⁄1 3 ≥ ⁄1 3



DUBINS-SPANIER
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• Question: What is the complexity of the Dubins-Spanier 
protocol in the Robertson-Webb model?

1. Θ 𝑛
2. Θ 𝑛 log 𝑛
3. Θ 𝑛'

4. Θ 𝑛' log 𝑛



EVEN-PAZ
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• Input: Interval [𝑥, 𝑦], number of agents 𝑛
Ø Assume 𝑛 = 2+ for some 𝑘

• If 𝑛 = 1, give [𝑥, 𝑦] to the single agent.
• Otherwise, let each agent 𝑖 mark 𝑧# s.t.

𝑉! 𝑥, 𝑧! =
1
2
	𝑉! 𝑥, 𝑦

• Let 𝑧∗ be the 𝑛/2-th mark from the left.
• Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 agents and on [𝑧∗, 𝑦] 

with the right 𝑛/2 agents.



EVEN-PAZ
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EVEN-PAZ
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• Theorem: EVEN-PAZ returns a Prop allocation.
• Proof:

Ø Inductive proof. We want to prove that if agent 𝑖 is allocated piece 𝐴! 
when [𝑥, 𝑦] is divided between 𝑛 agents, 𝑉! 𝐴! ≥ ⁄1 𝑛 𝑉! 𝑥, 𝑦
o Then Prop follows because initially 𝑉! 𝑥, 𝑦 = 𝑉! 0,1 = 1

Ø Base case: 𝑛 = 1 is trivial.
Ø Suppose it holds for 𝑛 = 2+,%. We prove for 𝑛 = 2+.
Ø Take the 2+,% left agents. 
o Every left agent 𝑖 has 𝑉! 𝑥, 𝑧∗ ≥ ⁄1 2 	𝑉! 𝑥, 𝑦
o If it gets 𝐴!, by induction, 𝑉! 𝐴! ≥ %

'!"#
	𝑉! 𝑥, 𝑧∗ ≥ %

'!
	𝑉! 𝑥, 𝑦



EVEN-PAZ
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• Question: What is the complexity of the Even-Paz protocol 
in the Robertson-Webb model?

1. Θ 𝑛
2. Θ 𝑛 log 𝑛
3. Θ 𝑛'

4. Θ 𝑛' log 𝑛



Complexity	of	Proportionality
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• Theorem [Edmonds and Pruhs, 2006]: Any proportional 
protocol needs Ω(𝑛 log 𝑛) operations in the Robertson-
Webb model.

• Thus, the EVEN-PAZ protocol is (asymptotically) provably 
optimal!
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Envy-Freeness



Envy-Freeness	:	Few	Agents
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• 𝑛 = 2 agents : CUT-AND-CHOOSE (2 queries)
• 𝑛 = 3 agents : SELFRIDGE-CONWAY (14 queries)

Gets complex pretty quickly!



Envy-Freeness	:	Few	Agents
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• [Brams and Taylor, 1995]
Ø The first finite (but unbounded) protocol for any number of agents

• [Aziz and Mackenzie, 2016a]
Ø The first bounded protocol for 4 agents (at most 203 queries)

• [Amanatidis et al., 2018]
Ø A simplified version of the above protocol for 4 agents (at most 171 

queries)



Envy-Freeness
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• Theorem [Aziz and Mackenzie, 2016b]
Ø There exists a bounded protocol for computing an envy-free 

allocation with 𝑛 agents, which requires 𝑂(𝑛.$
$$

$

) queries

Ø After 𝑂 𝑛'./)  queries, the protocol can output a partial allocation 
that is both proportional and envy-free

• What about lower bounds?



Complexity	of	Envy-Freeness
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• Theorem [Procaccia, 2009]
Any protocol for finding an envy-free allocation requires 
Ω(𝑛,) queries.

• Theorem [Stromquist, 2008]
There is no finite (even unbounded) protocol for finding a 
simple envy-free allocation for 𝑛 ≥ 3 agents.

Open Problem

Bridge the gap between 𝑂(𝑛.&
&&

&

) upper bound and 
Ω 𝑛'  lower bound for envy-free cake-cutting
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Equitability



Upper	Bound:	𝑛 = 2	Agents
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• Existence
Ø Suppose we cut the cake at 𝑥 to form pieces [0, 𝑥] and [𝑥, 1]
Ø Let 𝑓 𝑥 = 𝑣% 0, 𝑥 − 𝑣' 𝑥, 1
o Note that 𝑓 0 = −1, 𝑓 1 = 1, and 𝑓 is continuous

Ø By the intermediate value theorem: ∃𝑥∗ such that 𝑓 𝑥∗ = 0
Ø Allocation 𝐴% = [0, 𝑥∗] and 𝐴' = [𝑥∗, 1] is equitable 

• Theorem [Cechlárová and Pillárová, 2012]
Ø Using binary search for 𝑥∗, we can find an 𝜖-equitable allocation for 2 

agents with 𝑂 ln ⁄% 0  queries.



Upper	Bound:	𝑛 > 2	Agents
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• Theorem [Cechlárová and Pillárová, 2012]
Ø This technique can be extended to 𝑛 agents to find an 𝜖-equitable 

allocation in 𝑂 𝑛 ln ⁄% 0  queries.

• Theorem [Procaccia and Wang, 2017]
Ø There exists a protocol for 𝑛 agents which finds an 𝜖-equitable 

allocation in 𝑂 ⁄% 0 	 ln ⁄% 0  queries.
Ø Intuition:
o If 𝑛 ≤ ⁄% 0, use above protocol for finding an equitable 𝜖-equitable 

allocation.
o If 𝑛 > ⁄% 0, use a variant of the Evan-Paz algorithm to find an anti-

proportional allocation where 𝑛1 = ⁄% 0  agents get value at most 
1/𝑛′, and the rest receive nothing.
• While this is a “bad” allocation, it is 𝜖-equitable.



ANTIPROPORTINAL	EVEN-PAZ
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Lower	Bound
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• Theorem [Procaccia and Wang, 2017]
Any protocol for finding an 𝜖-equitable allocation must 
require Ω -. ⁄& '

-. -. ⁄& '
 queries.

• Theorem [Procaccia and Wang, 2017]
There is no finite (even if unbounded) protocol for finding 
an equitable allocation.
Ø Non-existence of bounded protocols follows from the previous 

result. 
Ø But their proof works for non-existence of unbounded protocols as 

well. 
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Efficiency



Efficiency
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• Weak Pareto optimality (WPO)
Ø Allocation 𝐴 is weakly Pareto optimal if there is no allocation 𝐵 such 

that 𝑣! 𝐵! > 𝑣!(𝐴!) for all 𝑖 ∈ 𝑁.
Ø “Can’t make everyone happier”

• Pareto optimality (PO)
Ø Allocation 𝐴 is Pareto optimal if there is no allocation 𝐵 such that 
𝑣! 𝐵! ≥ 𝑣! 𝐴!  for all agents 𝑖 ∈ 𝑁, and at least one inequality is 
strict.

Ø “Can’t make someone happier without making someone else less 
happy”



Pareto	Optimality	(PO)
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• Definition
Ø We say that an allocation 𝐴 = (𝐴%, … , 𝐴.) is PO if there is no 

alternative allocation 𝐵 = (𝐵%, … , 𝐵.) such that 
1. Every agent is at least as happy: 𝑉! 𝐵! ≥ 𝑉!(𝐴!), ∀𝑖 ∈ 𝑁
2. Some agent is strictly happier: 𝑉! 𝐵! > 𝑉!(𝐴!), ∃𝑖 ∈ 𝑁

• Q: Is it PO to give the entire cake to agent 1?
Ø A: Not necessarily. But yes, if agent 1 values every part of the cake 

positively.
Ø But a “sequential dictatorship” is always Pareto optimal
o Let agent 1 take whatever she values positively
o From the rest, let agent 2 take whatever she values positively
o And so on…



PO+EF+EQ
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• Theorem [Barbanel and Brams, 2011]
With two agents, there is no a simple allocation that is 
envy-free, equitable, and Pareto optimal.

0 1"1 2

1

2

"1 4 "3 4



PO+EF+EQ
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• Theorem [Barbanel and Brams, 2011]
With two agents, there is no an allocation that is envy-free, equitable, and Pareto 
optimal.

• Reorder each bit 𝑔 of the cake by ⁄𝑣)(𝑔) 𝑣*(𝑔)
• Choose x such that 𝑣) 0, 𝑥 = 𝑣* 𝑥, 0

• Question:
Ø Why is the algorithm EF? 

0 1"1 2

1

2

"1 4 "3 4



PO+EF+EQ
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0 1"1 2

1

2

"1 4 "3 4

• Theorem [Barbanel and Brams, 2011]
With two agents, there is no an allocation that is envy-free, equitable, and Pareto 
optimal.

• Reorder each bit 𝑔 of the cake by ⁄𝑣)(𝑔) 𝑣*(𝑔)
• Choose x such that 𝑣) 0, 𝑥 = 𝑣* 𝑥, 0

• Question:
Ø Why is the algorithm efficient and EF? 



PO+EF+EQ
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• Efficiency:
 

Ø Case I:
o Suppose for contradiction that 𝑣% 𝑦, 𝑥 = 0 and 𝑣' 𝑦, 𝑥 > 0 
o Then, 𝑣% 𝑦, 1 = 0 ⟹ 𝑣% 0, 𝑥 = 𝑣' 𝑥, 𝑦 = 1

𝑥𝑦



PO+EF+EQ
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• Efficiency:
 

Ø Case I:
o Suppose for contradiction that 𝑣% 𝑦, 𝑥 = 0 and 𝑣' 𝑦, 𝑥 > 0 
o Then, 𝑣% 𝑦, 1 = 0 ⟹ 𝑣% 0, 𝑥 = 𝑣' 𝑥, 𝑦 = 1

Ø Case II:
o Suppose for contradiction that 𝑣' 𝑥, 𝑦 = 0 and 𝑣% 𝑥, 𝑦 > 0 
o Then, 𝑣' 0,1 = 0 ⟹ 𝑣% 0, 𝑥 = 𝑣' 𝑥, 𝑦 = 1

• EF:
Ø  Suppose that 𝑣% 0, 𝑥 = 𝑣' 𝑥, 0 < 0.5
Ø But then efficiency is violated!

𝑥 𝑦



PO+EF+EQ:	(Non-)Existence
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• With 𝑛 ≥ 3 agents, PO+EQ is 
impossible

0 1"1 2

1

2



PO	+	EF

CSCI 699- Evi Micha 49

• Theorem [Weller ‘85]:
Ø There always exists an allocation of the cake that is both envy-free 

and Pareto optimal.

• One way to achieve PO+EF:
Ø Nash-optimal allocation: argmax2 	∏!∈3𝑉! 𝐴!
Ø Obviously, this is PO. The fact that it is EF is somewhat non-trivial.
Ø Named after John Nash
o Nash social welfare = product of utilities
o Different from utilitarian social welfare = sum of utilities



Nash-Optimal	Allocation
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• Example:
Ø Green agent has value 1 distributed over 0, ⁄' )
Ø Blue agent has value 1 distributed over [0,1]
Ø Without loss of generality (why?) suppose: 

o Green agent gets 𝑥 fraction of [0, ⁄% &]
o Blue agent gets the remaining 1 − 𝑥 fraction of [0, ⁄% &] AND all of [ ⁄% & , 1].

Ø Green’s utility = 𝑥,   blue’s utility = 1 − x ⋅ '
(
+ )

(
= (*'+

(

Ø Maximize: 𝑥 ⋅ (*'+
(

 ⇒ 𝑥 = ⁄( ,  ( ⁄( , fraction of ⁄' ( is ⁄) '). 

0 1
"2 3

Allocation 0 1
"1 2 Green has utility (

,

Blue has utility )
'



Problem	with	Nash	Solution
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• Computing any Pareto optimal allocation already requires 
an unbounded number of queries

• Theorem [Aziz & Ye ‘14]:
Ø For piecewise constant valuations, the Nash-optimal solution can be 

computed in polynomial time.

0 1

The density function of a 
piecewise constant 
valuation looks like this
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Strategyproofness



Strategyproofness	(SP)
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• Direct-revelation mechanisms
Ø A direct-revelation mechanism ℎ takes as input all the valuation 

functions 𝑣%, … , 𝑣., and returns an allocation 𝐴
Ø Notation: ℎ 𝑣%, … , 𝑣. = 𝐴, ℎ! 𝑣%, … , 𝑣. = 𝐴!

• Strategyproofness (deterministic mechanisms)
Ø A direct-revelation mechanism ℎ is called strategyproof if 
∀𝑣%, … , 𝑣., ∀𝑖, ∀𝑣!1 ∶ 𝑣! ℎ! 𝑣%, … , 𝑣. ≥ 𝑣!(ℎ! 𝑣%, … , 𝑣!1, … , 𝑣. )

Ø That is, no agent 𝑖 can achieve a higher value by misreporting her 
valuation, regardless of what the other agents report



Strategyproofness	(SP)
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• Strategyproofness (randomized mechanisms)
Ø Technically, referred to as “truthfulness-in-expectation”
o When referring to SP for randomized mechanisms, we will refer to 

this concept

Ø A randomized direct-revelation mechanism ℎ is called strategyproof 
if 

∀𝑣%, … , 𝑣., ∀𝑖, ∀𝑣!1 ∶ 𝐸 𝑣! ℎ! 𝑣%, … , 𝑣.
≥ 𝐸 𝑣! ℎ! 𝑣%, … , 𝑣!1, … , 𝑣.

Ø That is, no agent 𝑖 can achieve a higher expected value by 
misreporting her valuation, regardless of what the other agents 
report
o Expectation is over the randomness of the mechanism



Deterministic	SP	Mechanisms
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• Theorem [Menon and Larson ’17, Bei et al. ‘17]
No non-wasteful deterministic SP mechanism is (even 
approximately) proportional.

• Proof

0 1

0 1

0 1

Instance 1

Instance 2

Instance 3



Deterministic	SP	Mechanisms
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• Theorem [Menon and Larson ’17, Bei et al. ‘17]
No non-wasteful deterministic SP mechanism is (even 
approximately) proportional.
Ø Since EF is at least as strict as Prop, SP+EF is also impossible subject 

to non-wastefulness.
Ø Non-wastefulness can be replaced by a requirement of “connected 

pieces”, and the impossibility result still holds. 

Open Problem
Does the SP+Prop impossibility hold 

even without the non-wastefulness assumption?



Deterministic	SP	Mechanisms
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• SP+PO is easy to achieve 
Ø E.g. serial dictatorship

• SP+PO+EQ is impossible
Ø We saw that even EQ+PO allocations may not exist

Open Problem
Does there exist a direct revelation, deterministic SP+EQ mechanism?



Randomized	SP	Mechanisms

CSCI 699- Evi Micha 58

• We want the mechanism always return an allocation 
satisfying a subset of {EQ,EF,PO}, and be SP in expected 
utilities

• Recall: PO+EQ allocations may not exist
Ø Hence, we can only hope for SP+PO+EF or SP+EF+EQ
Ø The first is an open problem, but the second combination is 

achievable! Open Problem
Does there exist a randomized SP mechanism which always 

returns a PO+EF allocation?



Randomized	SP	Mechanisms
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• Theorem [Mossel and Tamuz, 2010; Chen et al. 2013] 
There is a randomized SP mechanism that always returns an 
EF+EQ allocation.
Ø Recall: In a perfect partition 𝐵, 𝑣! 𝐵+ = ⁄% . for all 𝑖, 𝑘 ∈ 𝑁
Ø Algorithm: Compute a perfect partition and return allocation 𝐴 which 

randomly assigns the 𝑛 pieces to the 𝑛 agents

Ø SP: Regardless of what the agents report, agent 𝑖 receives each piece 
of the cake with probability 1/𝑛, and thus has expected value exactly 
1/𝑛

Ø EF: Assuming agents report truthfully (due to SP), agent 𝑖 always 
receives a cake she values at 1/𝑛, and according to her, so do others.
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SP+PO+EF+EQ
Rand

SP+PO+EF
Det
Rand

SP+PO+EQ
Rand

Rand

SP+EF+EQ
Det Rand

PO+EF+EQ

Det
SP+PO

Rand

SP+EF
Det

Rand

SP+EQ
Det

PO+EF
Det

EF+EQ
DetRand

PO+EQ

= Impossibility
= Possibility
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• Theorem [Lyapunov ’40]: 
Ø There always exists a “perfect partition” (𝐵%, … , 𝐵.) of the cake such 

that 𝑉! 𝐵* = ⁄% . for every 𝑖, 𝑗 ∈ [𝑛]
Ø Every agent values every piece at exactly 1/𝑛

• Theorem [Alon ‘87]: 
Ø There exists a perfect partition that only cuts the cake at 𝑝𝑜𝑙𝑦(𝑛) 

points
Ø In contrast, Lyapunov’s proof is non-constructive and might need an 

unbounded number of cuts

• Unfortunately, computing a perfect partition needs an 
unbounded number of RW queries
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• If you’re given an algorithm for finding a perfect partition…
Ø Can you use it to design a randomized protocol that always returns 

an EF allocation and is SP-in-expectation?

Ø Yes! Compute a perfect partition and assign the 𝑛 bundles to the 𝑛 
agents uniformly at random

Ø Why is this always EF? 
o Every agent values every bundle at ⁄% .

Ø Why is this SP-in-expectation?
o Because an agent is assigned a random bundle, her expected 

utility is ⁄% ., irrespective of what she reports
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• Suppose there are 𝑚 homogeneous divisible goods
Ø Each good can be divided fractionally between the agents

• Let 𝑥#,9 = fraction of good 𝑔 that agent 𝑖 gets
Ø Homogeneous = agent doesn’t care which “part”
o E.g., CPU or RAM

• Special case of cake-cutting
Ø Line up the goods on [0,1] → piecewise uniform valuations
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• Nash-optimal solution:
   Maximize ∑# log𝑈#
   𝑈# = Σ9	𝑥#,9 ∗ 𝑣#,9      ∀𝑖
   Σ#	𝑥#,9 = 1                   ∀𝑔

   𝑥#,9 ∈ [0,1]                  ∀𝑖, 𝑔

• This is known as the Gale-Eisenberg convex program
Ø Can be solved exactly in strongly polynomial time
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Price	of	Fairness
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• Measures the worst-case loss in social welfare due to 
requirement of a fairness property 𝑋

• Social welfare of allocation 𝐴 is the sum of values of the agents
Ø Denoted 𝑠𝑤 𝐴 = ∑+∈- 𝑣+ 𝐴+

• Let ℱ denote the set of feasible allocations and ℱ8 denote the 
set of feasible allocations satisfying property 𝑋

𝑃𝑜𝐹8 = sup
9-,…,9&

max
;∈ℱ

𝑠𝑤(𝐴)

max
;∈ℱ.

𝑠𝑤(𝐴)
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• Theorem [Caragiannis et al., 2009]
For cake-cutting, the price of proportionality is Θ 𝑛 , and 
the price of equitability is Θ 𝑛 .

• Theorem [Bertsimas et al., 2011]
For cake-cutting, the price of envy-freeness is also Θ 𝑛 . 
This is achieved by an allocation maximizing the Nash 
welfare Π#	𝑣# 𝐴# .


