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Cake-Cutting




Cake-Cutting

A heterogeneous divisible good

> Heterogeneous = same part may be
valued differently by different agents

> Divisible = can be divided between agents

Cake C = [0,1]

> Almost without loss of generality

* Agents N = {1, ...,n}
* Piece of cake X € [0,1] = finite union of disjoint intervals

* Allocation A = (44, ..., 4y)

» Partition of the cake where each A; is a piece of the cake
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Agent Valuations

* Valuation of agent i is given by an integrable value density
function f;: [0,1] - R,
> Her value for a piece of cake X is V;(X) = | _, fi(x)dx

* Two key properties

> Additive: ForX NnY = @,
ViiX) + V() =V (XuY)
> Divisible: VA € [0,1] and X,
N

JY € X s.t. Vi(Y) = AV;(X)

* WLOG
> Normalized: V;([0,1]) = 1
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Complexity

* |[nputs are functions eval output

> Infinitely many bits may be needed to fully
represent the input

> Query complexity is more useful

H I

* Robertson-Webb Model X y
> Eval;(x,y) returns v;([x, y]) T
> Cut;(x, @) returns y such that v;([x, y])
=« cut output
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Fairness Goals

* What kind of fairness might we want from an allocation A?

* Proportionality (Prop):

1
Vi € N: Vl(Al) = ﬁ

* Envy-Freeness (EF):

Vi,j € N: VL(AL) = VL(A])

* Equitability (EQ):
Vi,j € N: Vi(Ai) = V}'(Aj) OIIANELGS

sense with
normalization
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Example

* Value density functions « Agent 1 wants [0, 1/5]
A uniformly and does not want
Agent 1 _Agent3 anything else

5 * Agent 2 wants the entire cake
uniformly

Agent 2

« Agent 3 wants [%/3,1]
uniformly and does not want
| — anything else
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Example

* Value density functions * Consider the following
X allocation
3 - Agent 1 . Agent 3
« A =[0,1/5] ® vi(41) = /3
2 * 1?2:[1/9»8/9]:'772(142):
/9
Agent 2 « A3 = [3/9,1] = v3(43) = 1/;

* The allocation is proportional,
but not envy-free or equitable
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Example

* Value density functions * Consider the following allocation

3 Agent 1 Agent 3 o Al — :0’ 1/6] = U1(A1) — 1/2
* Ay = [Y6,%/6]l = v2(42) = %/5
2 - « A3 =[/6,1] = v3(43) = 1/,
1 ngentZ * The allocation is proportional and
envy-free, but not equitable
| >
0 1/3 2/3 1
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Example

e Value density functions

A

Agent 1 Agent 3

Agent 2

* Consider the following
allocation

« Ay =[0,Y/s5] = v1(4)) =3/

* Ay = [Y/s5,%/5] =2 v2(4y) =
3/s

* A3 = [*/5,1] = v3(43) = /5

* The allocation is proportional,

CSCI 699- Evi Micha

v

envy-free, and equitable




Relations Between Fairness

Desiderata
* Prop: Vi € N:V;(4;) = 1/n
* EF:Vi,j € N:V;(4;) = V;(4))

* Question:
What is the relation between proportionality and EF?

Prop = EF
EF = Prop
Equivalent
Incomparable

S N
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Relations Between Fairness
Desiderata

* Envy-freeness implies proportionality
> Summing v;(4;) = vi(Aj) over all j gives proportionality

* For 2 agents, proportionality also implies envy-freeness
> Hence, they are equivalent.

e Equitability is incomparable to proportionality and envy-
freeness
> E.g. if each agent has value 0 for her own allocation and 1 for the

other agent’s allocation, it is equitable but not proportional or envy-
free.
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Existence

/+ Theorem Alon, 1987] N\
Suppose the value density function f; of each agent valuation v; is
continuous. Then, we can cut the cake at n® — n places and
rﬁarrange the n“ — n + 1 intervals into n pieces A4, ..., A;, such
that

K UL(A]) = 1/n,Vi,j EN

* This is called a “perfect partition”
> It is trivially envy-free (thus proportional) and equitable

* As we will later see, this cannot be found with finitely many
gueries in Robertson-Webb model

/
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Proportionality
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CUT-AND-CHOOSE

* Algorithm for n = 2 agents

-

* Agent 1 divides the cake into two pieces X, Y s.t.

Vl(X) — V1(Y) =1/2

* Agent 2 chooses the piece she prefers.

.

* This is EF and therefore proportional.

> Why?
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Robertson-Webb Model

* Two types of queries to an agent’s valuation function V/;
> Eval;(x, y) returns V;([x, y])
> Cut;(x, a) returns the smallest y such that V;([x, y]) = «
o If no such y exists, then it returns 1

eval output —— v

n_ I

X y cut output

* Question:
> How many queries are needed to find an EF allocation whenn = 2?
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DUBINS-SPANIER

* Protocol for finding a proportional allocation for n agents

( Referee starts with a knife at 0 \
* Referee continuously moves the knife to the right

* Repeat n — 1 times: Whenever the piece to the left of knife
is worth 1/n to a agent, the agent shouts “stop”, gets the
piece, and exits.

&The last agent gets the remaining piece. /
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DUBINS-SPANIER
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DUBINS-SPANIER

* Moving a knife continuously is not really needed.

* At each stage, we can ask each remaining agent a cut query
to mark his 1/n point in the remaining cake.

e Move the knife to the leftmost mark.
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DUBINS-SPANIER

3 3
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DUBINS-SPANIER

y T |
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DUBINS-SPANIER

ga o
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DUBINS-SPANIER

ga  go s
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DUBINS-SPANIER

* Question: What is the complexity of the Dubins-Spanier
protocol in the Robertson-Webb model?

0(n)
O(nlogn)
O(n?)
O(n?logn)

s W
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EVEN-PAZ

ﬂnput: Interval [x, y|, number of agents n \

> Assume n = 2% for some k

* If n =1, give [x, y] to the single agent.

* Otherwise, let each agent i mark z; s.t.
Villx,z) = 5 Villx,y1)

* Let z* be the n/2-th mark from the left.

* Recurse on [x, z*] with the left n/2 agents and on [z7, V]

Kwith the right n/2 agents. /
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EVEN-PAZ

$ 8 83
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EVEN-PAZ

* Theorem: EVEN-PAZ returns a Prop allocation.

* Proof:

» Inductive proof. We want to prove that if agent i is allocated piece 4;
when [x, y] is divided between n agents, V;(4;) = (1/n)V;([x, y])
o Then Prop follows because initially V;([x, y]) = V;([0,1]) = 1

> Base case: n = 1 is trivial.

> Suppose it holds for n = 2%~1, We prove for n = 2k.

> Take the 2%~1 |eft agents.
o Every left agent i has V;([x,z*]) = (1/2) V;([x, y])

o If it gets A;, by induction, V;(4;) = zk% Villx,z*]) = Z_Ik Vi([x, v])
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EVEN-PAZ

* Question: What is the complexity of the Even-Paz protocol
in the Robertson-Webb model?

0(n)
O(nlogn)
O(n?)
O(n?logn)

s W
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Complexity of Proportionality

* Theorem [Edmonds and Pruhs, 2006]: Any proportional
protocol needs (n logn) operations in the Robertson-
Webb model.

* Thus, the EVEN-PAZ protocol is (asymptotically) provably
optimall
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Envy-Freeness

CSCI 699- Evi Micha




Envy-Freeness : Few Agents

e n = 2 agents : CUT-AND-CHOOSE (2 queries)

* n = 3 agents : SELFRIDGE-CONWAY (14 queries)

Gets complex pretty quickly!

Suppose we have three players P1, P2 and P3. Where the procedure gives a criterion for a decision it means that criterion gives an optimum choice for the player.

1. P1 divides the cake into three pieces he considers of equal size.

2. Let's call A the largest piece according to P2.

3. P2 cuts off a bit of A to make it the same size as the second largest. Now A is divided into: the timmed piece A1 and the trimmings A2. Leave the timmings A2 to the side for now.
« |f P2 thinks that the two largest parts are equal (such that no trimming is needed), then each player chooses a part in this order: P3, P2 and finally P1.

. P3 chooses a piece among A1 and the two other pieces.

5. P2 chooses a piece with the limitation that if P3 didn't choose A1, P2 must choose it.

6. P1 chooses the last piece leaving just the timmings A2 to be divided.

PN

It remains to divide the timmings A2. The trimmed piece A1 has been chosen by either P2 or P3; let's call the player who chose it PA and the other player PB.

1. PB cuts A2 into three equal pieces.

2. PA chooses a piece of A2 - we name it A21.

3. P1 chooses a piece of A2 - we name it A22.

4. PB chooses the last remaining piece of A2 - we name it A23

CSCI 699- Evi Micha




Envy-Freeness : Few Agents

* [Brams and Taylor, 1995]

> The first finite (but unbounded) protocol for any number of agents

* [Aziz and Mackenzie, 2016a]
> The first bounded protocol for 4 agents (at most 203 queries)

 [Amanatidis et al., 2018]

> A simplified version of the above protocol for 4 agents (at most 171
queries)
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Envy-Freeness

* Theorem [Aziz and Mackenzie, 2016b]

> There exists a bounded protocol for computing an envy-free
nn"t
allocation with n agents, which requires O(n"n ) queries

> After 0(n?™*3) queries, the protocol can output a partial allocation
that is both proportional and envy-free

 What about lower bounds?
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Complexity of Envy-Freeness

e Theorem [Procaccia, 2009]
Any protocol for finding an envy-free allocation requires
Q(n?) queries.

Open Problem
nnnn
Bridge the gap between O (n" ) upper bound and
Q(n?) lower bound for envy-free cake-cutting

* Theorem [Stromquist, 2008]
There is no finite (even unbounded) protocol for finding a
simple envy-free allocation for n = 3 agents.
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Equitability
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Upper Bound: n = 2 Agents

* Existence
> Suppose we cut the cake at x to form pieces [0, x] and [x, 1]
> Let f(x) = v1([0,x]) — v, ([x, 1])
o Note that f(0) = —1, f(1) = 1, and f is continuous
> By the intermediate value theorem: 3x* such that f(x*) = 0
> Allocation A; = [0,x"] and 4, = [x7, 1] is equitable

 Theorem [Cechlarova and Pillarova, 2012]

> Using binary search for x*, we can find an e-equitable allocation for 2
agents with 0(In(Y/¢)) queries.
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Upper Bound: n > 2 Agents

 Theorem [Cechlarova and Pillarova, 2012]

> This technigue can be extended to n agents to find an e-equitable
allocation in 0(n1In(Y/¢)) queries.

* Theorem [Procaccia and Wang, 2017]

> There exists a protocol for n agents which finds an e-equitable
allocation in 0(Y/¢ In(1/¢)) queries.

> Intuition:

o If n < 1/, use above protocol for finding an equitable e-equitable
allocation.

o If n > 1/, use a variant of the Evan-Paz algorithm to find an anti-
proportional allocation where n’ = [1/¢]| agents get value at most
1/n’, and the rest receive nothing.

* While this is a “bad” allocation, it is e-equitable.
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ANTIPROPORTINAL EVEN-PAZ
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o B ’
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Lower Bound

* Theorem [Procaccia and Wang, 2017]

Any protocol for finding an e-equitable allocation must
In(/¢)

InIn(/e)

require () ( ) gueries.

* Theorem [Procaccia and Wang, 2017]
There is no finite (even if unbounded) protocol for finding
an equitable allocation.

CSCI 699- Evi Micha




Efficiency
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Efficiency

* Weak Pareto optimality (WPO)

> Allocation A is weakly Pareto optimal if there is no allocation B such
that vi(Bi) > v;(A;) foralli € N.
> “Can’t make everyone happier”

* Pareto optimality (PO)

> Allocation A is Pareto optimal if there is no allocation B such that
v;(B;) = v;(4;) for all agents i € N, and at least one inequality is
strict.

> “Can’t make someone happier without making someone else less
happy”
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Pareto Optimality (PO)

* Definition
> We say that an allocation A = (44, ..., 4,) is PO if there is no
alternative allocation B = (By, ..., By) such that
1. Every agent is at least as happy: V;(B;) = V;(4;), Vi €N
2. Some agent is strictly happier: V;(B;) > V;(4;),3i €N

* Q:Isit PO to give the entire cake to agent 17

> A: Not necessarily. But yes, if agent 1 values every part of the cake
positively.
> But a “sequential dictatorship” is always Pareto optimal
o Let agent 1 take whatever she values positively
o From the rest, let agent 2 take whatever she values positively
o And so on...
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PO+EF+EQ

* Theorem [Barbanel and Brams, 2011]
With two agents, there is no a simple allocation that is
envy-free, equitable, and Pareto optimal.

A
Agent 1 Agent 2 Agent 1

0 14 1/, 34 1
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PO+EF+EQ

 Theorem [Barbanel and Brams, 2011]
With tvxllo agents, there is no an allocation that is envy-free, equitable, and Pareto
optimal.

Reorder each bit g of the cake by v;(g)/v,(9)
* Choose x such that v, ([0, x]) = v,([x, 0])

A

Agent 1 Agent 2 Agent 1
2

CSCI 699- Evi Micha




PO+EF+EQ

 Theorem [Barbanel and Brams, 2011]

With tvxllo agents, there is no an allocation that is envy-free, equitable, and Pareto
optimal.

Reorder each bit g of the cake by v;(g)/v,(9)
* Choose x such that v, ([0, x]) = v,([x, 0])

Agent 1 Agent 2
2

|
1
0 /4 1/, 34 1
* Question:
> Why is the algorithm efficient and EF?
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PO+EF+EQ

* Efficiency:

» Case l:
o Suppose for contradiction that v;([y,x]) = 0and v,([y,x]) > 0

o Then, v1(ly,1]) = 0 = v, ([0, x]) = v2(Ix,y]) = 1
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PO+EF+EQ

* Efficiency:

» Case l:
o Suppose for contradiction that v;([y,x]) = 0and v,([y,x]) > 0
o Then, v1([y,1]) = 0= v, ([0,x]) = v,([x,y]) = 1

» Case ll:
o Suppose for contradiction that v, ([x, y]) = 0 and v;([x,y]) > 0
o Then, v,([0,1]) = 0 = v1([0,x]) = v,([x,¥]) =1

* EF:
> Suppose that v4([0,x]) = v,([x,0]) < 0.5
> But then efficiency is violated!
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PO+EF+EQ: (Non-)Existence

A
Agents 1,2 Agent 3

* Withn = 3 agents, PO+EQ is 2
impossible
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PO + EF

* Theorem [Weller ‘85]:

> There always exists an allocation of the cake that is both envy-free
and Pareto optimal.

* One way to achieve PO+EF:
> Nash-optimal allocation: argmax, [I;en Vi(4;)
> Obviously, this is PO. The fact that it is EF is somewhat non-trivial.
> Named after John Nash
o Nash social welfare = product of utilities
o Different from utilitarian social welfare = sum of utilities
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Nash-Optimal Allocation

2/,
0 % 1

* Example:
> Green agent has value 1 distributed over [0, 2/5]
> Blue agent has value 1 distributed over [0,1]

> Without loss of generality (why?) suppose:

o Green agent gets x fraction of [0, 2/5]
o Blue agent gets the remaining 1 — x fraction of [0, 2/5] AND all of [?/5,1].

> Green’s utility = x, blue’s utility = (1 —x) - §_|_ § _ 3-32x

> Maximize: x - Tx = x =3/, (3/, fraction of 2/, is 1/,).

. 3
1/2 Green has utnhtyz

Allocation 0 * 1 Blue has utility%
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Problem with Nash Solution

 Computing any Pareto optimal allocation already requires
an unbounded number of queries

* Theorem [Aziz & Ye ‘14]:

> For piecewise constant valuations, the Nash-optimal solution can be
computed in polynomial time.

The density function of a
piecewise constant —_—
valuation looks like this
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Strategyproofness
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Strategyproofness (SP)

* Direct-revelation mechanisms

> A direct-revelation mechanism h takes as input all the valuation
functions v4, ..., v, and returns an allocation A

> Notation: h(vq, ..., ) = A4, hij(vq, ..., vy) = A4;

e Strategyproofness (deterministic mechanisms)
> A direct-revelation mechanism h is called strategyproof if

VU1, e, U, VI, Y] 2 0 (R (Vg e, ) = (R (V1 e, U, e, )

> That is, no agent i can achieve a higher value by misreporting her
valuation, regardless of what the other agents report
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Strategyproofness (SP)

e Strategyproofness (randomized mechanisms)
> Technically, referred to as “truthfulness-in-expectation”

o When referring to SP for randomized mechanisms, we will refer to
this concept

> A randomized direct-revelation mechanism h is called strategyproof
if
vy, ., Uy, Vi, VD E[vi(h-ivl, s Un))]
= E[Ui(hi(v1, ey Ul{, ey vn)5

> That is, no agent i can achieve a higher expected value by
misreporting her valuation, regardless of what the other agents
report

o Expectation is over the randomness of the mechanism

CSCI 699- Evi Micha




Deterministic SP Mechanisms

* Theorem [Menon and Larson ’17, Bei et al. ‘17]
No non-wasteful deterministic SP mechanism is (even
approximately) proportional.

e Proof
|
1 |
Instance 1 0 ! 1
|
|
I
Instance 2 0 . 1
|
|
I
Instance 3 0 ' 1
e
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Deterministic SP Mechanisms

* Theorem [Menon and Larson ’17, Bei et al. ‘17]
No non-wasteful deterministic SP mechanism is (even
approximately) proportional.

> Since EF is at least as strict as Prop, SP+EF is also impossible subject
to non-wastefulness.

> Non-wastefulness can be replaced by a requirement of “connected
pieces”, and the impossibility result still holds.

Open Problem
Does the SP+Prop impossibility hold
even without the non-wastefulness assumption?
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Deterministic SP Mechanisms

 SP+PO is easy to achieve
> E.g. serial dictatorship

 SP+PO+EQ is impossible
> We saw that even EQ+PO allocations may not exist

Open Problem
Does there exist a direct revelation, deterministic SP+EQ mechanism?
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Randomized SP Mechanisms

* We want the mechanism always return an allocation
satisfying a subset of {EQ,EF,PO}, and be SP in expected
utilities

* Recall: PO+EQ allocations may not exist
> Hence, we can only hope for SP+PO+EF or SP+EF+EQ

> The first is an open problem, but the second combination is
achievabple!

Open Problem
Does there exist a randomized SP mechanism which always
returns a PO+EF allocation?
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Randomized SP Mechanisms

e Theorem [Mossel and Tamuz, 2010; Chen et al. 2013]
There is a randomized SP mechanism that always returns an
EF+EQ allocation.
> Recall: In a perfect partition B, v;(By) = Y/nforalli,k € N

> Algorithm: Compute a perfect partition and return allocation A which
randomly assigns the n pieces to the n agents

> SP: Regardless of what the agents report, agent i receives each piece
of the cake with probability 1/n, and thus has expected value exactly
1/n

» EF: Assuming agents report truthfully (due to SP), agent i always
receives a cake she values at 1/n, and according to her, so do others.
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Existential Summary

X =Impossibility

< = Possibility
SP+PO+EF+EQ
X Rand
SP+PO+EF SP+PO+EQ SP+EF+EQ PO+EF+EQ
X Det X Rand X Det X Rand
? Rand < Rand
SP+PO
< Det

PO+EF PO+EQ EF+EQ
< Det X Rand < Det
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Perfect Partition

 Theorem [Lyapunov '40]:
> There always exists a “perfect partition” (B4, ..., By,) of the cake such
that Vi(Bj) = 1/ foreveryi,j € [n]
> Every agent values every piece at exactly 1/n

* Theorem [Alon ‘87]:

> There exists a perfect partition that only cuts the cake at poly(n)
points

> In contrast, Lyapunov’s proof is non-constructive and might need an
unbounded number of cuts

* Unfortunately, computing a perfect partition needs an
unbounded number of RW queries
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Perfect Partition

* If you’re given an algorithm for finding a perfect partition...

> Can you use it to design a randomized protocol that always returns
an EF allocation and is SP-in-expectation?

> Yes! Compute a perfect partition and assign the n bundles to the n
agents uniformly at random

> Why is this always EF?
o Every agent values every bundle at 1/,

»> Why is this SP-in-expectation?

o Because an agent is assigned a random bundle, her expected
utility is 1/, irrespective of what she reports
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Homogeneous Divisible Goods

e Suppose there are m homogeneous divisible goods
> Each good can be divided fractionally between the agents

* Let x; 4 = fraction of good g that agent i gets

> Homogeneous = agent doesn’t care which “part”
o E.g., CPU or RAM

* Special case of cake-cutting
> Line up the goods on [0,1] — piecewise uniform valuations
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Homogeneous Divisible Goods

* Nash-optimal solution:
Maximize }.;log U;
Ui =2gXjg*Vig Vi
Xixig=1 Vg
Xig € 10,1] Vi, g

* This is known as the Gale-Eisenberg convex program

> Can be solved exactly in strongly polynomial time
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Price of Fairness
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Price of Fairness

* Measures the worst-case loss in social welfare due to
requirement of a fairness property X

* Social welfare of allocation A is the sum of values of the agents
> Denoted sw(4) = Yy vi(4;)

* Let F denote the set of feasible allocations and Fy denote the
set of feasible allocations satisfying property X

max sw(A4)

PoFy = sup r‘:IET )
vl,...,v'rl AE%))(( SW
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Price of Fairness

 Theorem [Caragiannis et al., 2009]
For cake-cutting, the price of proportionality is ©(1/n), and
the price of equitability is @(n).

* Theorem [Bertsimas et al., 2011]
For cake-cutting, the price of envy-freeness is also O@(1/n).
This is achieved by an allocation maximizing the Nash

welfare I1; v;(4;).

CSCI 699- Evi Micha




