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Indivisible Goods

* Agents: N ={1,2,...,n}
* Resource: Set of indivisible goods M = {91, g2, ---» Gm}
* Allocation A = (44, ..., A;)is a partition of M

* Each agent i has a valuation v; : 2 - R,
> Additive utilities: v;(X) = X jex vi(9)
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Lottery

* Envy-freeness is not guaranteed

* But what about envy — freeness in expectation?
 Lottery: Distribution over Allocations

e = V= a
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Lottery to Random Allocation

 Random Assignment P:
> Dig: probability good g to be assigned to agent i

> Py = [pig,s - Dig,,)
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Envy-Free Random Allocation

e Expected Utility of agent i over a random allocation P
> Elvi(P))] = XgemPig - ui(g)
* Ex-Ante Envy-Freeness:Vi,j € N, E[v;(P)] = E|v;(P;)]

1/3 1/3 1/3

e But what about Ex-Post Envy-Freeness up to one good?

> Ex-post means the property must be satisfied regardless of the random coin
flips
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Randomized Round-Robin

* Round-Robin algorithm ensures EF1

* A natural approach is to choose the agent ordering uniformly at
random

* Theorem [Freeman et al., 2020]: Randomized Round-Robin
violates ex-ante envy-freeness
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Probabilistic Serial Algorithm

* This rule defines a random allocation
* Pretend that each good is a divisible good

e At every point time, all agents “eat” their favorite available good
at the same rate

* When all the items are eaten, each agent has eaten m/n
“probability shares”
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Probabilistic Serial Algorithm

92

93 94 91

93
9> 92 93
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9s 93 92

a 1/12
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Probabilistic Serial Algorithm

e Random Allocation

g1 1/2 1/2 0
92 0 0 1
g3 3/4 0 1/4
ga 1/12 | 10/12 | 1/12
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Probabilistic Serial Algorithm

* Theorem [Bogomolnaia and Moulin, 2001]: Probabilistic Serial
(PS) Algorithm satisfies ex-ante envy-freeness

* Proof:

> Whenever an agent i is eating a good g, this good g is the best available
good for agent i at that time

> Therefore, agent i weakly prefers good g over any other good that another
agent i is eating at the same time

> Since all the agents consume at the same rate, the random assignment is
ex-ante envy-free
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Random Allocation to Lottery

* We saw that every lottery induces a random assignment. Is the
converse also true?

e A permutation matrix is a square binary matrix that has exactly
one entry of 1 in each row and each column

* When n = m, a permutation matrix represents an allocation

D
O |
o
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Random Allocation to Lottery

* A bistochastic matrix is a square non-negative matrix, each of
whose rows and columns sums to 1

* When n = m, a bistochastic matrix represents a random allocation

o o,
=

1/2 | 1/4 | 1/4

1/2 | 1/2 0

0 1/4 | 3/4

3 b6
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Random Allocation to Lottery

= 1/4 | 1/4
1/2 | 1/2 | 0
® | o |1a]|3a

x1/4
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* Theorem [Birkhoff-von Neumann]: Any
k Xk bistochastic matrix can be obtained
as a convex combination of at most
0 (k?) permutation matrices




PS-Lottery Algorithm

When n = m, PS algorithm returns a bistochastic matrix

We want to apply PS algorithm in a way that returns a
bistochastic matrix even whenn #m

Add dummy items such thatm' =n - ¢
For each agent i, create c representatives, {i4, ..., i}

Each representative i; eats their favorite available good
during time step [t — 1, ]
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PS-Lottery Algorithm

a b c

91 91 iy
93 9s 91
9> ) 93

94 93 92
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PS-Lottery Algorithm

a b c
91 g1 92
93 Ya 91
9> 9> 93
Ya 93 92
dq dq dq
d, d, d,
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PS-Lottery Algorithm

- i

g1 191 (91 (91 |92 | 92

93z 193 |94 |94 |91 | 91

92 192 (92 |92 |93 | I3

da |94 |93 |93 |92 |92

di|dy|dy|dy|dy|dy

dy | dy | dy | dy | dy | dy
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PS-Lottery Algorithm

“HEH-

91 |91 |91 |91 |92 |92

93z (93 |9a |94 |91 | 1
93 1/4
1/12

92 (92 (92 |92 |93 | I3

1/12
9a |9a (Y3 |93 |92 |92

d
di|dy|dy|dy|dy|dy 111/3 1/3 1/3

dy |dy | dy | dy | dy| dy d, 13 1/3 1/3
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PS-Lottery Algorithm

- B -

g1 |12 0o | 12| 0o | 0o | O
g, | o | o] o | o0 1 | o
gs | 12114 o | o | 0 | 1/4
gs | 0 |1/12|1/2 | 1/3 ] 0 |1/12
d, | 0o |13] o |13]| o |13
d, | 0o |13] o |13]| o | 1/3
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PS-Lottery Algorithm

i

g1 | 1/2| 0o |12 ] o0

g, | 0| o | o | 0 0
gs | 1/2 |14 o | 0 1/4
gs | O [1/12| 1/2 | 1/3 1/12
d, | 0 |13] o |13 1/3
d, | 0o |13]| o | 1/3 1/3

CSCI 699 - Evi Micha

* Apply Birkoffs’ decomposition
for getting a lottery

* In each allocation A in the
support of the lottery, each i;
is assigned exactly one item,
denoted by git, that she ate
during the time step [t — 1, t]

* [isassighed A; = {gil, ...,git}




PS-Lottery Algorithm

* Theorem [Aziz et al., 2023]: PS-Lottery Algorithm satisfies ex-post EF1

* Proof:
> Consider any two representatives i; and j;, witht' >t

> Since Jg, is assigned g]t-’ this means that gfl was available during
the time step [t' — 1, t’], hence during the time step [t — 1, t]

!

> i; chose to eat g/ instead of g]t-’, thus i prefers g; to gf
» Consider any two agents i and j

o From above, Vt € [(C], ui(gf) > ui(gfﬂ)

oThus, u;(A4;) =ui(gf) +wi(gf) + - +u(gl) = wi(gf) +

u(gf) + - +wi(97) = w45\ g
=

CSCI 699 - Evi Micha 21




