

CSCI 699

Fair Division 3: Best-of-Both Worlds Evi Micha

Indivisible Goods

• Agents:
$$N = \{1, 2, ..., n\}$$

- Resource: Set of indivisible goods $M = \{g_1, g_2, \dots, g_m\}$
- Allocation $A = (A_1, ..., A_n)$ is a partition of M
- Each agent *i* has a valuation $v_i : 2^M \to \mathbb{R}_+$ > Additive utilities: $v_i(X) = \sum_{g \in X} v_i(g)$

- Envy-freeness is not guaranteed
- But what about envy freeness in expectation?
- Lottery: Distribution over Allocations

Lottery to Random Allocation

1/4

1/4

1/2

		Hattalapaet? Aytelapiteapiteat Artigotaj						fabriquet Agrandigent Africal	-		
🕵 🔶 🕴		?			¥			()			
	X										
	L .					_					
		•						1/4	1/4	1/4	1/2
Random Assignment <i>P</i> :						A	1/4	1/2	1/4	1/4	
> $p_{i,g}$: probability good g to be assigned to agent $i \$ > $P_i = [p_{i,g_1}, \dots p_{i,g_m}]$						1/2	1/4	1/2	1/4		

ullet

Envy-Free Random Allocation

- Expected Utility of agent *i* over a random allocation P
 > E[v_i(P_i))] = Σ_{g∈M} p_{i,g} · u_i(g)
- Ex-Ante Envy-Freeness: $\forall i, j \in N, E[v_i(P_i)] \ge E[v_i(P_j)]$

- But what about Ex-Post Envy-Freeness up to one good?
 - Ex-post means the property must be satisfied regardless of the random coin flips

Randomized Round-Robin

- Round-Robin algorithm ensures EF1
- A natural approach is to choose the agent ordering uniformly at random
- Theorem [Freeman et al., 2020]: Randomized Round-Robin violates ex-ante envy-freeness

- This rule defines a random allocation
- Pretend that each good is a divisible good
- At every point time, all agents "eat" their favorite available good at the same rate
- When all the items are eaten, each agent has eaten m/n "probability shares"

а	b	С
g_1	g_1	g_2
g_3	g_4	g_1
g_2	g_2	g_3
g_4	g_3	g_2

Random Allocation

	а	b	С
g_1	1/2	1/2	0
g_2	0	0	1
g_3	3/4	0	1/4
g_4	1/12	10/12	1/12

- Theorem [Bogomolnaia and Moulin, 2001]: Probabilistic Serial (PS) Algorithm satisfies ex-ante envy-freeness
- Proof:
 - Whenever an agent i is eating a good g, this good g is the best available good for agent i at that time
 - Therefore, agent i weakly prefers good g over any other good that another agent i is eating at the same time
 - Since all the agents consume at the same rate, the random assignment is ex-ante envy-free

Random Allocation to Lottery

- We saw that every lottery induces a random assignment. Is the converse also true?
- A permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column
- When n = m, a permutation matrix represents an allocation

Random Allocation to Lottery

- A bistochastic matrix is a square non-negative matrix, each of whose rows and columns sums to 1
- When n = m, a bistochastic matrix represents a random allocation

	NEW 1		
	1/2	1/4	1/4
S	1/2	1/2	0
Core	0	1/4	3/4

Random Allocation to Lottery

	1/2	1/4	1/4
M	1/2	1/2	0
	0	1/4	3/4

• Theorem [Birkhoff-von Neumann]: Any $k \times k$ bistochastic matrix can be obtained as a convex combination of at most $O(k^2)$ permutation matrices

 Image: second second

 $\times 1/4$

	1	0	0				
3	0	1	0				
	0	0	1				

 $\times 1/4$

- When n = m, PS algorithm returns a bistochastic matrix
- We want to apply PS algorithm in a way that returns a bistochastic matrix even when $n \neq m$
- Add dummy items such that $m' = n \cdot c$
- For each agent *i*, create *c* representatives, $\{i_1, \dots, i_c\}$
- Each representative i_t eats their favorite available good during time step [t 1, t]

а	b	С
g_1	g_1	g_2
g_3	g_4	g_1
g_2	g_2	g_3
g_4	g_3	g_2

а	b	С
g_1	g_1	g_2
g_3	g_4	g_1
g_2	g_2	g_3
g_4	g_3	g_2
d_1	d_1	d_1
<i>d</i> ₂	<i>d</i> ₂	<i>d</i> ₂

<i>a</i> ₁	<i>a</i> ₂	b ₁	b ₂	<i>c</i> ₁	<i>c</i> ₂
g_1	g_1	g_1	g_1	g_2	g_2
g_3	g_3	g_4	g_4	g_1	g_1
g_2	g_2	g_2	g_2	g_3	g ₃
g_4	g_4	g_3	g_3	g_2	g_2
<i>d</i> ₁					
<i>d</i> ₂					

<i>a</i> ₁	<i>a</i> ₂	b ₁	b ₂	<i>c</i> ₁	<i>c</i> ₂
g_1	g_1	g_1	g_1	<i>g</i> ₂	g_2
<i>g</i> ₃	<i>g</i> ₃	g_4	g_4	g_1	g_1
g_2	g_2	g_2	g_2	g_3	g ₃
g_4	g_4	<i>g</i> ₃	g_3	<i>g</i> ₂	<i>g</i> ₂
<i>d</i> ₁	d_1				
<i>d</i> ₂					

$$g_1$$
 $1/2$
 $1/2$
 g_2
 1

 g_3
 $3/4$
 $1/4$
 g_4
 $10/12$
 $1/12$
 d_1
 $1/3$
 $1/3$
 d_2
 $1/3$
 $1/3$

	<i>a</i> ₁	<i>a</i> ₂	<i>b</i> ₁	<i>b</i> ₂	<i>c</i> ₁	<i>c</i> ₂	g_1	1/2	1/2	
g_1	1/2	0	1/2	0	0	0	g_2		1	
g_2	0	0	0	0	1	0	g_3	3/4	4 1/4	ł
g_3	1/2	1/4	0	0	0	1/4	a۸	10/	12	1/12
g_4	0	1/12	1/2	1/3	0	1/12	04	107	12	1/12
d_1	0	1/3	0	1/3	0	1/3	d_1	1/3 1	/3 1/3	
<i>d</i> ₂	0	1/3	0	1/3	0	1/3	d_2	1/3 1	/3 1/3	

	<i>a</i> ₁	<i>a</i> ₂	b ₁	b ₂	<i>c</i> ₁	<i>c</i> ₂
g_1	1/2	0	1/2	0	0	0
<i>g</i> ₂	0	0	0	0	1	0
g_3	1/2	1/4	0	0	0	1/4
g_4	0	1/12	1/2	1/3	0	1/12
d_1	0	1/3	0	1/3	0	1/3
<i>d</i> ₂	0	1/3	0	1/3	0	1/3

- Apply Birkoffs' decomposition for getting a lottery
- In each allocation A in the support of the lottery, each i_t is assigned exactly one item, denoted by g_i^t, that she ate during the time step [t 1, t]

• *i* is assigned
$$A_i = \{g_i^1, \dots, g_i^t\}$$

- Theorem [Aziz et al., 2023]: PS-Lottery Algorithm satisfies ex-post EF1
- Proof:
 - > Consider any two representatives i_t and j_t , with t' > t
 - > Since j_t , is assigned $g_j^{t'}$ this means that $g_j^{t'}$ was available during the time step [t' 1, t'], hence during the time step [t 1, t]
 - > i_t chose to eat g_i^t instead of $g_j^{t'}$, thus i prefers g_i^t to $g_j^{t'}$

Consider any two agents i and j

◦ From above, ∀t ∈ [C], $u_i(g_i^t) \ge u_i(g_i^{t+1})$ ◦ Thus, $u_i(A_i) = u_i(g_i^1) + u_i(g_i^2) + \dots + u_i(g_i^t) \ge u_i(g_j^2) + u_i(g_j^2) + \dots + u_i(g_j^t) = u_i(A_j \setminus g_j^1)$